
Chapter 11

Internet Voting with
Helios

Olivier Pereira
Université catholique de Louvain
ICTEAM – Crypto Group
Louvain-la-Neuve, Belgium

CONTENTS
11.1 Introduction . 278

11.1.1 Helios History . 279
11.2 Election Walkthrough . 280

11.2.1 Voting in a Helios Election . 280
11.2.1.1 Invitation to Vote . 281
11.2.1.2 Submitting a Ballot . 281

11.2.2 Election Management . 283
11.2.2.1 Election Creation . 284
11.2.2.2 Election Tally . 285

11.2.3 Election Audit . 286
11.2.3.1 Cast-as-Intended Verification 286
11.2.3.2 Recorded-as-Cast Verification 289
11.2.3.3 Tallied-as-Recorded Verification 290

11.3 The Use of Cryptography in Helios . 290
11.3.1 Arithmetic and Computational Assumption 291
11.3.2 Encryption . 291
11.3.3 Zero-Knowledge Proofs . 293

277

278 � Real-World Electronic Voting: Design, Analysis and Deployment

11.3.3.1 Sigma Protocols . 293
11.3.3.2 Proving Honest Key Generation 294
11.3.3.3 Proving Correct Decryption . 295
11.3.3.4 Proving Ballot Validity . 295

11.3.4 Protocol Analysis . 297
11.3.4.1 Works on Verifiability . 297
11.3.4.2 Works on Ballot Privacy . 298
11.3.4.3 Miscellaneous Works . 299

11.4 Web Application Perspective . 299
11.4.1 The Browser Interface . 300
11.4.2 Cryptography in the Browser . 301
11.4.3 Application Security . 302

11.5 Helios Variants and Related Systems . 302
11.5.1 Mix-net-Based Variants . 302
11.5.2 Variants Aiming at Countering Ballot-Stuffing 303
11.5.3 Variants Aiming at Perfectly Private Audit Data 304
11.5.4 Variants Based on Full Threshold Encryption 305
11.5.5 Variant Supporting Vote Delegation . 305
11.5.6 Alternate Helios Frontends . 306
11.5.7 Audit Tools . 306

11.6 Conclusion . 306
Acknowledgments . 308

11.1 Introduction
Helios is a voting system designed to enable practical open-audit, end-to-end ver-
ifiable elections with only the support of a web browser. Since 2009, Helios has
been used by several hundreds of thousands of voters from various institutions: uni-
versities (including Université catholique de Louvain [46, 121] and Princeton Uni-
versity [212]), associations (including the International Association for Cryptologic
Research [90] and the Association for Computing Machinery, [42]) and a number of
private companies.

The choice of making it possible to create, run and tally an election with only
the support of web browsers has several implications. The first is to bring end-to-
end verifiable elections to anyone who can access the Internet. Using Helios does
not require using any dedicated hardware, installing any specific software or having
a physical mail address. This is also true for the whole election audit process: all
audit operations can be performed from a basic laptop. Any voter can verify that
his vote is included, unaltered, in the tally, and anyone can verify that the tally is
correct. These audit operations do not require any privileged access to some data or
infrastructure: they only require the manipulation of public data. Furthermore, and
contrary to traditional paper voting, the audit operations do not require any kind of
continuous watch: there is no chain of custody that needs to be maintained in order

Internet Voting with Helios � 279

to perform a meaningful audit. As a result, an independent audit of the tally can be
performed by anyone and at any time after the end of an election, something that
would be infeasible in any large-scale traditional paper election. We will elaborate
on these various operations and guarantees later in this chapter.

Helios guarantees the confidentiality of the votes by using distributed encryption
(since version 2.0): votes are encrypted directly on the voter’s computer and, only
then, are sent to the Helios server which does not ever see any decryption key, unless
the election organizers decide otherwise. Decryption keys are independently gener-
ated by trustees and are never combined: no partial decryption key should ever leave
the trustee’s computer. As a result, corruption of all the trustees of an election would
be needed to perform any illicit decryption.

Still, Helios inherits the important limitations that seem to be inherent to pure
Internet elections – while mitigating them to some extent. First, Helios provides very
limited security guarantees to voters who would rely on a compromised computer
for submitting their vote. If a malware controls the computer of a voter, and if this
computer is the only interface that the voter uses for the election, the computer can
display anything the voter wants to see while doing something completely different
in the background (e.g., submit a vote for a different candidate or relay the vote in the
clear to a third party). But, contrary to non-verifiable systems, Helios offers several
audit possibilities that make it possible for a voter to detect vote alterations that
would be performed by a malicious computer, provided that the voter can access an
honest computer at some point, a computer that does not even need to be connected to
the Internet. These observations also apply to the Helios server which, if corrupted,
would be forced to leave evidence of any alteration of the votes it would perform,
enabling detection as long as an honest device can be used.

Second, Helios does very little to protect voters from coercion – even though
some forms of coercion resistance can be obtained through external measures, e.g.,
by forcing voters to use Helios in the privacy of a voting booth and in the absence of
cameras. But, if the election organizers let the whole interaction between the voter
and the system happen in an unsupervised context (no voting booth, no in-person
registration process . . .), a coercer could effectively dictate his behavior to a voter,
from the beginning to the end of an election, and verify the compliance of the voter
to his instructions. Still, even in this case, Helios offers a limited form of protection:
voters are allowed to submit as many ballots as they want, and only the last one is
tallied. This feature, besides its huge advantages for dealing with voters using an
unreliable Internet connection or uncomfortable with a browser interface, enables
voters who would feel pushed to vote in an undesired way at a specific moment
(being “trapped” in a voting party with colleagues for instance) to submit another
ballot at a later time, in a safe context.

It is of course most important to keep these limitations in mind, and to decide
whether they are relevant in a specific context, before deciding to make any use of
Helios in an election.

280 � Real-World Electronic Voting: Design, Analysis and Deployment

11.1.1 Helios History

The initial version of Helios, designed by Adida and presented in 2008 [44], was a
web-based variant of a simple verifiable voting scheme by Benaloh [84], which was
itself inspired from a protocol by Sako and Kilian [508]. In this version, the Helios
server acted as a single trustee for the confidentiality of the votes, while guaranteeing
open-audit properties. The Helios server generated a pair of keys for a public key
encryption scheme; the public key was used by all voters to encrypt and submit their
vote from their browser; the Helios server performed a (single) verifiable shuffle of
the received ballots in order to cut them from the identity of the voters, and eventually
decrypted all shuffled ballots individually. The security model for Helios 1.0 was
summarized as: “Trust no one for integrity, trust Helios for privacy.”

In the summer of 2008, the design of Helios 2.0 by Adida, de Marneffe, Pereira
and Quisquater [46] started, resulting in the Helios protocol that is still in use today,
and in the first use of an end-to-end verifiable voting system in a legally binding,
multi-thousand voters election, in March 2009. A first major modification of Helios
2.0 was to abandon the shuffle-based approach and to move to a simpler and much
more efficient solution based on the homomorphic aggregation of votes, inspired
by a protocol by Cramer, Gennaro and Schoenmakers [178]. In this approach, and
by relying on an appropriate encryption scheme, all encrypted votes are aggregated
(and possibly weighted) into an encryption of the election outcome, which is eventu-
ally decrypted. A second major decision was to strengthen the vote privacy model by
moving to the use of a distributed encryption scheme, in such a way that no single en-
tity or device would, at any time, be in touch with enough keying material to decrypt
individual ballots. In particular, this removed the need to have any decryption key
being manipulated by the Helios server at any time, therefore considerably limiting
the consequences of a server compromise. The web architecture was also consider-
ably modified, making the various components (administration, ballot preparation,
bulletin board) more independent. Eventually, various features, like the possibility to
publish voter aliases instead of public voter IDs on the board, were also introduced
there. The details of the Helios protocol are described in Section 11.3.

Since 2009, the functionalities offered by the Helios web application were further
refined, offering new authentication modes, audit features, improved interfaces, and
taking advantage of the advances in the design of web browsers to maximize com-
patibility. These aspects are described in Section 11.2 and some are further discussed
in Section 11.4. We conclude in Section 11.5 by describing several Helios variants
and extensions that have been designed and sometimes actually deployed.

11.2 Election Walkthrough
We start by describing, from a functional point of view, the process of voting in,
managing and auditing a Helios election.

Internet Voting with Helios � 281

11.2.1 Voting in a Helios Election

11.2.1.1 Invitation to Vote

The first contact of a voter with a Helios election usually happens through an email
inviting to vote. This email contains a description of the election, a link to the voting
booth, and a voter ID and password that need to be used in order to submit a ballot.
An election fingerprint, provided as a tracking number, is also provided, and identi-
fies the election in a unique way (we explain how it is computed in Section 11.2.2.1).

Several variants of this process are possible:

� Helios can make use of external authentication services, like those provided by
Google or Facebook (of course, these external credentials are never accessible
to the Helios server) or, in some cases, custom authentication services like a
university SSO or LDAP service. In this case, a vote invitation will not contain
credentials.

� Helios can add a voter alias in the invitation to vote. While using an explicit
voter ID is a way to improve the democratic control of who submitted a ballot
in an election (a notion sometimes called eligibility verifiability [353]), many
organizations consider that their list of members is private, and do not want
an election to be an occasion to indirectly publish a member list. In some
other cases, even if the member list can be made available to the voters, the
act of voting is considered to be private, due to coercion concerns. In these
situations, the Helios server makes it possible to keep the voter ID private, and
only publishes anonymous aliases: this is enough for a voter to track his own
ballot, but not to verify who submitted the others ballots included in the tally.
This approach is also sometimes adopted as a line of defense in the case of a
catastrophic failure that would result in the decryption of individual ballots, or
simply of the natural evolution of computing power that would make it possible
to break encryption: having ballots associated with anonymous aliases and not
with real identifiers may prevent a malicious party to determine who’s ballot
was decrypted. Other solutions to these concerns, that do not hurt eligibility
verifiability, are discussed in Section 11.5.3.

11.2.1.2 Submitting a Ballot

Using the link to the voting booth, voters can submit a ballot to the election server.
Helios has an open API, which means that anyone (voter, candidate, activist . . .)
could program a ballot preparation system (BPS) that can be used to submit ballots
in any election – this has been proposed as a programming class project in some uni-
versities. However, most voters actually use the BPS provided by the Helios website,
even if using a different BPS might have some advantages in terms of trust – a voter
might feel more confident that his vote will be properly prepared if he uses a ballot
preparation system provided by a candidate he supports.

282 � Real-World Electronic Voting: Design, Analysis and Deployment

The Helios BPS is served as a single web page: as soon as the voting booth is
loaded in a (recent) browser, a voter can go offline, make his choices, have them
encrypted, have all the cleartext choices and randomness erased, and only come back
online in order to submit the encrypted ballot. Voting using the Helios BPS is a 3-step
process.

1. The voter selects his answers to the different questions that are displayed, in a
form that is similar to the sample ballot from Figure 11.1. A ballot can contain
any number of questions, each of these questions offering the possibility to
be answered by making a number of choices determined by the election rules,
e.g., one single choice, any number of choices (for approval voting), or a num-
ber within a specific range, e.g., from 0 to the number of seats available in the
election. For the moment, Helios does not support write-ins or ranked voting,
which would require using very different cryptographic techniques. Some He-
lios extensions have been used however, that can accommodate arbitrary ballot
formats – see Section 11.5.1.

2. When the voter has completed his choices, he is invited to review them and
to make any changes that he may desire – see Figure 11.2. In the meantime,
the ballot has been encrypted, and a ballot tracker is made available to the
voter. This tracker uniquely identifies the encrypted ballot while preserving
the secrecy of the vote, and makes it possible for the voter to challenge the
BPS and, later, to verify that his encrypted ballot has been properly recorded
by the voting server and included in the tally. The voter is invited to record or
print this tracker immediately.

3. The voter can then decide to submit his ballot to the Helios voting server, which
will prompt him to provide his credentials and send his ballot. Requiring voter
authentication at the very end of the voting process has serious advantages. It
makes it possible for anyone to review the ballot style and the ballot prepa-
ration process, possibly in collaboration with other persons in case of doubts,
without any fear of having their credentials stolen. It also makes it harder for
a corrupted Helios server to serve a tampered version of the BPS as a function
of the voter credentials (possibly targeting a specific voter population with ma-
licious software), since the identity of the voter is unknown when the BPS is
served.

It can be observed on Figures 11.1 and 11.2 that the election fingerprint, which
was part of the invitation to vote, is displayed at the bottom of each screen of the
BPS, for verification by the voter. This fingerprint is not simply served from the He-
lios server, but actually recomputed by the BPS as a function of all election param-
eters: election URL, ballot encryption keys, questions, answer rules . . . This feature
provides a safety measure for the voter and could also help detect a malicious Helios
server or vote invitation when an independent BPS is used.

It can eventually be observed in Figure 11.2 that two different options are pre-
sented to the voter: either simply submit the ballot to the Helios server, or verify that

Internet Voting with Helios � 283

Figure 11.1: Selection of an answer in the Helios Ballot Preparation System.

Figure 11.2: Ballot review in the Helios BPS, and choice to submit or verify its con-
tent.

the ballot has been encrypted correctly (see the frame on the right of the ballot). We
will come back to this feature in Section 11.2.3.

Any voter can repeat the whole ballot preparation and submission procedure any
number of times: only the last received ballot will be taken into account, and voters
can check this thanks to their ballot tracker.

284 � Real-World Electronic Voting: Design, Analysis and Deployment

11.2.2 Election Management

A public Helios instance is hosted on https://vote.heliosvoting.org/,
from which anyone can create and manage elections. This page also contains a link
to the Helios code repository, currently hosted on Github, which makes it possible
for anyone to host a personal Helios server. The code is released under Apache 2.0
license.

11.2.2.1 Election Creation

When creating a new election, the election administrator first defines the election
name, as well as several general features: whether the election is intended to run with
a closed or open list of voters, whether voter aliases are to be used (see discussion
in Section 11.2.1.1), and what contact address should be offered to the voters for
support. As an interesting feature, Helios also offers the possibility to have the lists of
answers randomized every time they are displayed by the BPS. This feature makes it
possible to remove inequalities that may result from the position of some candidates
on a ballot (e.g., top of the list), when this is considered to be useful.

In a second step, the election administrator is invited to define three lists.

Questions An arbitrary list of questions can be included in a single election. For
each of the questions, a list of proposed answers is defined, together with the
minimum and maximum number of answers that the voter is allowed to pick.
The computational complexity of ballot preparation caused the size of these
lists to be a common bottleneck when Helios 2.0 was released, but this limita-
tion largely disappeared thanks to the evolution of the browsers, which made
it possible to considerably improve the efficiency of the ballot preparation pro-
cess.

Voters The list of voters who are allowed to submit a ballot in an election, when it is
defined in advance, can be uploaded to the Helios server as a comma-separated
value (CSV) file, including the voter ID, email address and full name to be used
in the email vote invitation.

Trustees The trustees are the parties that are trusted to maintain the confidentiality
of the votes, and to take part in the tally decryption process. By default, the
Helios server is configured to serve as a trustee, but it can be revoked, and
any number of new trustees can be added. Trustees have a very sensitive role.
Each of them needs to generate a pair of keys, made of a public and a secret
component (further technical explanations are available in Section 11.3.2.) The
public key needs to be uploaded to the Helios server, while the secret key must
be kept safe and . . . secret. At tallying time, all trustees are required to take
part in the decryption of the election results, by making use of their secret key.
As a corollary of this tallying procedure, if any trustee is missing, there will be
no way to obtain the election result, and it is likely that the election will need

Internet Voting with Helios � 285

to be restarted. More robust procedures have been proposed in the literature,
in order to be able to tolerate a limited number of failing trustees [457, 252],
but they are considerably more difficult to use, requiring multiple rounds of
interactions between the trustees, which is why Helios relies on this single-
pass procedure that maximizes confidentiality – see also Section 11.5.4.

Practically, trustees are registered through the management interface, in a way
that is similar to the voter registration process. They receive an email with a
URL, from which they reach a web page that enables them to generate their
key pair, upload the public component, save the secret one, and test whether
the whole process succeeded.

When the questions and voters have been defined, and when the trustees have re-
turned their public key, the election can be frozen. From that moment, no change can
be made in any of the election parameters, and the election fingerprint is computed
as a hash of all election parameters. This election fingerprint should be broadcast
through various channels: depending on the elections, it has been printed in institu-
tional newspapers, displayed on the election pages of the institution and/or included
in the invitation to vote.

When the election is frozen, the voters can be invited to vote, and Helios offers
a mailing mechanism that includes various templates and supports the distribution
of the election credentials and optional aliases. Voters can then submit their ballots,
as explained in Section 11.2.1. Every time a ballot is received, the Helios server
checks its validity and keeps it for inclusion in the tally. When a voter submits more
than one ballot, only the last one is used in the tally (which can be verified using
the recorded-as-cast verification procedure explained in Section 11.2.3.2) while the
others are archived.

11.2.2.2 Election Tally

Once the voting time is over, the Helios server computes an encryption of the elec-
tion tally, by aggregating the last valid ballot received from each voter, using the
homomorphic property of the encryption scheme that is used to protect the votes, as
described in Section 11.3.2. This is a public operation, which anyone can perform as
easily as the Helios server.

Then the trustees are invited to decrypt this tally. By connecting to the Helios
trustee interface through their browsers, the trustees can download the encrypted
tally, see its fingerprint, load their private key in their browser (it will never leave the
browser), perform their partial decryption of the tally, and upload the result of this de-
cryption to the Helios server. Just as for the ballot preparation, there is no need to use
the Helios web interface for this purpose: another software, managed independently,
could perform the same operations and submit the partial tally decryption.

No information about the tally can be obtained as long as one of the trustees did
not submit its partial tally decryption. But as soon as all the trustees completed their

286 � Real-World Electronic Voting: Design, Analysis and Deployment

duty, the Helios server combines the partial decryptions into the full election tally
and makes that tally available. Again, this combination of the partial decryptions is a
public operation.

When the tally is complete, all the information that is needed for verifying the
election becomes available from the Helios server. Besides, the secret keys stored by
the trustees can be destroyed: they are of no use for the audit, and this destruction
decreases the risks of a key compromise in the future.

11.2.3 Election Audit

The audit of a Helios election includes three types of verifications.

1. The cast-as-intended verification enables any voter to obtain the assurance that
the ballot he submits captures his vote intent.

2. The recorded-as-cast verification enables any voter to obtain the assurance that
his ballot has been properly recorded on the Helios server.

3. The tallied-as-recorded verification enables anyone to verify that all the valid
recorded votes are included in the tally. This verification is sometimes sepa-
rated into the notions of universal verifiability and eligibility verifiability [353].

Together, these verification steps provide what is often called end-to-end verifiability.

11.2.3.1 Cast-as-Intended Verification

The ballot tracker displayed to the voter before the submission of the ballot (see
Figure 11.2) is expected to be a faithful fingerprint of the encrypted voter intent. A
voter can however legitimately question this, and be willing to find out whether this
ballot really captures his intent.

Helios offers the possibility to challenge the ballot preparation system through a
process that is often referred to as a Benaloh challenge. The key ingredient of this
challenge lies in the moment at which the ballot tracker is displayed to the voter, that
is, after the completion of all ballot preparation tasks (the full ballot information is in
there), but before the voter authenticates to submit his ballot. This means that, when
the BPS displays the ballot tracker, it does not know whether this ballot is intended to
be posted to the Helios server, or if this ballot preparation is just part of an audit. The
Benaloh challenge proceeds by offering the voter two options: either to authenticate
and submit the ballot as described in Section 11.2.1.2, or to require a ballot audit and
verify the encryption by clicking on the button in the frame in Figure 11.2.

If the second option is chosen, the BPS is required to provide all the data it
has used to prepare the ballot, including all the randomness that has been used for
encryption. Based on these data, the voter can now use a single ballot verification

Internet Voting with Helios � 287

software to verify that the ballot matches its vote intent, is valid, and matches the
committed ballot tracker. Since the BPS had to display the ballot tracker before the
voter marked its intent to audit the ballot, it cannot adapt its behavior when the audit
is requested: the data that is provided must match that ballot tracker.

Helios provides a single ballot verifier, accessible as a single web page but, as
usual, there is no need to use software included in Helios for that task. Another
possibility that the Helios web interface offers is to post the audited ballot on a public
ballot tracking center. There, the ballot will be verified by the Helios server and by
anyone volunteering to do so. This may simplify the task of the voter who then does
not need to run any verification software by himself, but only to check on the ballot
tracking center whether his ballot has been declared valid for the correct vote intent
and ballot tracker.

In any case, a ballot that is audited cannot be submitted anymore, since the access
to the audit data could violate the privacy of the vote. The goal is to verify whether
the BPS behaves honestly on a specific device, and not to verify whether the specific
ballot that a voter wants to submit has been correctly prepared.

We may then wonder how effective can this inherently probabilistic procedure
be. The high-level response is as follows: suppose that a malicious party manages
to corrupt the BPS and wants to influence the election outcome by flipping 1% of
the votes (or any proportion p). Then, as soon as around 100 (or around 1/p) ballot
audits are triggered randomly during the election (by voters, activists . . .), we can
expect that the corrupted BPS will be detected at least once, which can in turn trigger
more audits and investigations. Interestingly, the bound we mention above does not
depend on the number of voters, which makes this process particularly efficient in a
large-scale election. However, the effectiveness of the audit procedure really depends
on the corruption model that is considered and on how the verification of the audited
ballot is performed.

Corrupted ballot preparation system. The use of a corrupted ballot preparation
system, originating from any source, is the typical situation in which the Be-
naloh challenge works: any vote manipulation by the BPS will be discovered
by any honest single ballot verifier.

Corrupted Helios server. A malicious Helios server could go a bit further than cor-
rupting the BPS, in some cases: if a voter uses the Helios BPS and the Helios
single ballot verifier, then collusion can happen, and the verifier could be able
to falsely convince the voter that his vote has been properly encoded. The same
thing could happen if the voter decides to post his ballot on the ballot tracking
center, and if nobody but the Helios server attempts to verify the ballot. This
stresses the importance of using independent auditing tools when running a
Helios election (see also Section 11.5.7).

Corrupted voting client. If the device that the voter uses is under control of the ad-
versary, then the Benaloh challenge can only be effective if the voter is able
to access an uncorrupted device at some point. If this is not the case, then the

288 � Real-World Electronic Voting: Design, Analysis and Deployment

corrupted device will be able to display everything that the voter expects to
see, whatever happens in the background. For instance, the corrupted client
can prepare a ballot for candidate A, even if the voter wants to vote for B,
display the ballot tracker for the A ballot and, if asked for an audit, alter the
output of any ballot verifier running on the same device to make it claim that
the ballot encodes a vote for B. This scenario, already described in [46], has
been practically illustrated by Estehghari and Desmedt [222] for instance. In
this demonstration, a malicious PDF document is forged, and is distributed
as the program of a candidate. If the PDF file is opened with a specific ver-
sion of Adobe Reader, a vulnerability of Adobe Reader is exploited in order
to install a malicious plugin in Firefox, before making Firefox crash. Once the
voter restarts Firefox, the malicious plugin becomes active and monitors the
web connections of the users and performs the modifications described above
to alter any vote that would be prepared in this browser in a way that would
apparently pass all the verification steps as long as the voter keeps using this
corrupted Firefox instance. Taking the audit data into another browser or de-
vice that would not be corrupted would be enough to detect the manipulation,
but this definitely reduces the usability of the process, and is one of the reasons
why we do not advise using Helios (and any other pure Internet voting system
that we are aware of) in a setting where corrupted voting clients are a plausible
scenario.

Corrupted TLS/PKI The access to a single ballot verifier or to the ballot tracking
center will most likely depend on the availability of an authentic Internet con-
nection. An attacker who manages to subvert TLS or a certification authority is
likely to be able to provide a voter with a modified BPS and ballot verification
tool, or with a modified view of the ballot tracking center, which would bypass
the verification process. Similar issues can happen for the other verification
procedures described below.1

One last difficulty may arise from this cast-as-intended verification process: the
lack of evidence. If a voter claims that a ballot audit failed, there is no way for a
third party to decide whether a system component is corrupted or if the voter made
a mistake, either a honest one, or with the intent of raising unjustified suspicions
about the system. Furthermore, even with an honest and careful voter, it might be
really hard to determine whether a failed audit results from a corrupted voter device
or from a malicious third party (e.g., the Helios server.) A voter could possibly try to
record on camera his interactions with the voting system and his audit, but no third
party would still be able to determine whether the voter device is corrupted (maybe
by the voter himself) or if a third party is corrupted. So, in all cases, it will not be
possible to draw conclusions from voter complaints, but such complaints will cer-
tainly be a useful alert calling for further investigations in order to collect evidence.

1We discuss the impact of a TLS/PKI failure here because these are elements on which Helios relies.
Of course, errors in the Helios cryptographic protocols can have a similar impact. These will be discussed
in the sections below.

Internet Voting with Helios � 289

Despite having never raised any actual difficulty in practice, this lack of an effective
dispute resolution procedure creates a risk of denial of service attacks on elections,
and finding practical solutions to this potential difficulty is one of the important open
challenges in the area of verifiable voting technologies.

11.2.3.2 Recorded-as-Cast Verification

Once a voter is convinced that the ballot tracker displayed by the BPS correctly
captures his vote intent, this ballot tracker can serve as a basis to verify the proper
recording of the ballot. A voter can do that by connecting to the Helios Ballot Track-
ing Center web page, which displays the ballot trackers of all the votes intended to
be used in the tally, and by verifying whether his ballot is actually displayed there,
with the right tracking number.

Just as the access to the ballot preparation system, the access to the ballot track-
ing center does not require any authentication. This makes it harder for a corrupted
Helios server to adapt the list of ballots depending on the voter accessing the tracking
center. It also makes it easy to delegate this verification: a voter can send his tracking
number to activists, or even broadcast it on social networks for verification by others.
Still, the verification of the ballot presence at a given time during the election does
not guarantee that the ballot will still be there, unmodified, and used as part of the
tally. Therefore, it is useful that voters inspect the ballot tracking center when there
is a public agreement on the ballots that will be used in the tally, that is, when the
hash of the encrypted tally is made available to the trustees before decryption.

In some elections [46], an audit day has been organized before the tally: the
election organizers published a digitally signed version of the ballot tracking center
content, and a full day was left to the voters for verifying that their ballot was listed
there. Of course, it would be still possible for malicious election organizers to sign
different versions of the ballot tracking center and to target the distribution channels
properly, but they would need to take the risk that someone would discover the ex-
istence of two different signed lists of ballots, which would be immediate evidence
of corruption. Designs for a more robust and distributed ballot tracking center have
also been proposed, including by Culnane and Schneider [185].

As for the cast-as-intended property, dispute resolution difficulties may arise if a
voter complains that his ballot was not properly recorded: it may be impossible to de-
cide whether a component of the system failed, or if the voter is trying to mislead the
election organizers and participants. Solutions to this problem have been explored,
either as procedures external to the normal system usage (see [46] for instance) or as
internal extensions, e.g., by Culnane et al. [181] for the Prêt-à-Voter system.

Also, a voter might be subverted into connecting to a corrupted ballot tracking
center, in which case verification would clearly offer no guarantee. This could happen
in various ways. For instance, an attacker could modify vote invitations, making the
voters believe that their ballot needs to be submitted and verified from the wrong
place (note that this would also require to be able to modify the election fingerprint

290 � Real-World Electronic Voting: Design, Analysis and Deployment

or to corrupt the BPS in order to avoid detection.) Alternatively, if TLS or the PKI
on which a voter relies fails, a voter might have his ballot erased or replaced, and be
displayed an alternate ballot tracking center despite using the correct URL.

11.2.3.3 Tallied-as-Recorded Verification

The two verification processes that we just described are largely individual: a voter
checks what happens with his vote, independently of anyone else’s vote.

The tallied-as-recorded verification is universal in the sense that anyone will care
not only about whether his own vote was properly included in the tally, but also
whether all the other votes that were included in the tally were valid votes submitted
by valid voters.

The starting point for the tallied-as-recorded verification process is the ballot
tracking center: from there, anyone can collect the list of people who submitted bal-
lots and the corresponding tracking numbers. Unless the election administrators de-
cide to obfuscate the voter names using aliases, this list provides the information that
is needed to verify that the ballots were submitted by real voters. In case of doubts
(voter credentials could have been stolen, or there might be ballot stuffing performed
on a corrupted Helios server), it is also possible to contact voters in person, possibly
at random, and to ask them to confirm their ballot tracker.

Once the list of tracking numbers is confirmed, the second step of the verifica-
tion process consists in downloading the full list of ballots from the Helios server,
and checking whether all these ballots match the expected tracking numbers. Based
on these ballots, the validity of all the votes can be verified by inspecting the proofs
that they contain. When the validity of all the ballots is verified, the encrypted votes
can be aggregated into an encryption of the tally. Eventually, the correctness of the
decryption of the tally can also be checked, by verifying the decryption proofs pro-
vided by the trustees. All these steps heavily rely on cryptographic techniques, which
are detailed in the next section, and are detailed in the online Helios documentation,
making it possible for any programmer to implement a verification system, which
many programmers did.

This tallied-as-recorded verification process is considerably more demanding
than the other verification steps: it certainly requires considerably more computa-
tional power, more than is typically available in a browser for any election of reason-
able size. However, this verification step is also the one that can most naturally be
delegated to third parties (activists, candidates), as it focuses on a global property of
the election.

Internet Voting with Helios � 291

11.3 The Use of Cryptography in Helios
Helios makes heavy use of cryptography in order to enable the verification of an
election without degrading the privacy of the votes. This section outlines the cryp-
tographic protocols used in Helios, and discusses the various assumptions on which
they rely. These cryptographic techniques are fairly close to an original proposal
by Cramer, Gennaro and Schoenmakers [178]. A more detailed exposition of these
techniques is available in the tutorial of Bernhard and Warinschi [100].

11.3.1 Arithmetic and Computational Assumption

The protocols implemented in Helios make use of a multiplicative cyclic group G
of prime order q, in which the Decisional Diffie–Hellman (DDH) problem [110] is
believed to be hard. This means that, given a generator g of G and a triple ga,gb,gc

where a and b are chosen at random in Zq, it is believed to be hard to decide whether
c has also been chosen at random in Zq, just as a and b, or whether c = ab.

Among the various possible choices for G, we opted for a subgroup of 256 bit
prime order q of Z∗p, the multiplicative group of integers modulo a 2048 bits prime p.
This choice provides us with a reasonable compromise between simplicity (no need
to implement elliptic curve arithmetic), efficiency (exponentiation with a 256 bit q
is approximately 8 times faster than if we choose q = (p− 1)/2) and security (the
resulting security level approximately corresponds to a medium-term protection as
described in the ECRYPT report [35]).

11.3.2 Encryption

ElGamal [213] is the simplest public key encryption scheme whose security relies on
the hardness of the DDH problem. It works as follows.

� The secret decryption key is a random value x chosen in Zq, from which the
public encryption key is computed as y = gx.

� A message m ∈G is encrypted by picking a random r in Zq, and computing a
ciphertext as (c1,c2) = (gr,myr).

� A ciphertext (c1,c2) can then be decrypted as m = c2/cx
1, using the decryption

key x.

This encryption scheme guarantees indistinguishability of ciphertexts [260] if
the DDH problem is hard in G: anyone who would be able to derive any single bit
of information about the plaintext corresponding to a given ciphertext would also be
able to solve the DDH problem in G. This encryption scheme is used in Helios to
protect the votes, and indistinguishability of ciphertext implies, in particular, that no
one will be able to even recognize if two ciphertexts encrypt the same vote or not.

292 � Real-World Electronic Voting: Design, Analysis and Deployment

When presented a ballot with a list of candidates, a voter expresses his choices by
encrypting “0” or “1” for each candidate, depending on whether he wants to support
that candidate or not. This “0” or “1” are actually encoded as g0 and g1, which are
two elements of G, as needed for ElGamal encryption. This encoding, resulting in a
scheme that is often called “exponential ElGamal,” brings an extra benefit: it makes
ciphertexts additively homomorphic. Indeed the product of an encryption of ga and
an encryption of gb is an encryption of ga+b. This feature is most useful for counting
the votes: given a series of ciphertexts encrypting all the voters’ choices regarding
one candidate, we can simply multiply all those ciphertexts together, which provides
an encryption of the number of voters who supported that candidate. This last ci-
phertext is the only one that is decrypted, which guarantees the confidentiality of the
individual votes.

We however do not want to trust a single entity to not decrypt any individual vote.
To this purpose, we distribute the key generation and distribution procedure among
a set of trustees T1, . . . ,Tn. This is performed as follows.

� For key generation, each trustee Ti generates an ElGamal key pair (xi,yi = gxi)
and keeps xi secret. The election public key is then computed as gx =

∏
gxi .

At no point does any single party learn x.

� For the decryption of a ciphertext (c1,c2), each trustee Ti computes and pub-
lishes a decryption factor di = cxi

1 . The plaintext is eventually computed as
c2/
∏

di.

This procedure is a simplified version of the threshold protocol proposed by Peder-
sen [458]. While it does not provide robustness against failing trustees, it is consid-
erably simpler to use, as it proceeds in a single asynchronous round and does not
require any private channel between pairs of trustees for key generation. In practice,
some robustness can be obtained by pairing trustees in order to have at least two
copies of each secret xi.

The use of the exponential variant of ElGamal has one potential downside,
though: the ElGamal decryption process actually provides the exponential encod-
ing gm of the message m that we want to recover, and not m. This means that an
extra step is actually needed in order to complete decryption: the extraction of the
discrete logarithm of gm in base g. Given that m is typically upper bounded by the
total number of voters, this extraction is hardly a problem in practice: our simple
implementation of Shanks’ baby-step giant-step algorithm [524] can extract a 40-bit
discrete logarithm in a matter of seconds on a standard laptop [46].

If decryption efficiency had been a problem, Paillier encryption [452] would have
offered a considerably more efficient solution. However, generating a Paillier key
pair in a distributed way [188] is considerably more challenging, due to the need of
building an RSA modulus with unknown factorization.

Internet Voting with Helios � 293

11.3.3 Zero-Knowledge Proofs

The verifiability of the election and confidentiality of the votes heavily rely on the
use of zero-knowledge proofs, used to prove three types of statements:

1. Trustees are required to prove that they know the private key that matches the
public key they are publishing;

2. Trustees are required to prove that they honestly contribute to the tally of the
elections;

3. Voters are required to prove the validity of the ballot they submit.

11.3.3.1 Sigma Protocols

Helios makes use of sigma protocols to prove all these statements. We only outline
these protocols here, and invite the interested reader to consult Damgård [187] for
further details.

A sigma protocol defines a three-pass interaction between a prover P and a ver-
ifier V , as depicted in Figure 11.3. In the first message, called the commitment, P
submits a list of random values a, typically made of elements of G, to the verifier.
This commitment will be used to blind the secret values about which P wants to make
a statement. The second message, called the challenge, contains a random integer e,
chosen by V . It is crucial for the soundness of the proof that P does not know e when
he commits through a. Eventually, P sends the response f to V , which is typically
made of elements of Zq. V eventually makes use of the proof statement, a, e and f to
decide whether he accepts the proof.

Figure 11.3: A three-pass sigma protocol.

We of course do not want to rely on interactive proofs in an election: the provers
should be able to submit proofs of their statements once and for all and make these
proofs available to anyone for future verification. This is where the strong Fiat–
Shamir transformation comes into play [236, 99]. This transformation modifies the
second step of the protocol, by computing the challenge e as a hash of the com-
mitment a and of the statement to be proven, instead of having the challenge se-
lected by V . The resulting proofs are computationally sound and non-interactive

294 � Real-World Electronic Voting: Design, Analysis and Deployment

zero-knowledge in the random-oracle model [79]. Having described the common
pattern of all proofs used in Helios, we turn to the actual proof descriptions.

11.3.3.2 Proving Honest Key Generation

The first context in which Helios requires proofs is during key generation by the
trustees. It is clear from the key generation described above that, if all trustees collude
or have their secret key stolen, then no privacy is guaranteed. We however want to
make sure that, as long as one trustee behaves honestly, the privacy of the votes is
protected.

Observing the key generation process described in Section 11.3.2, and assuming
that we have n trustees, a malicious Tn could subvert the process to his advantage as
follows. Tn would first wait until all other trustees have submitted their own public
key yi = gxi . Then, he would generate a key pair (x,y = gx) of his own, and publish a
public key yn = y/

∏n−1
i=1 yi. As a result, the election public key would be computed

as y =
∏n

i=1 yi, and Tn would be able to decrypt all individual votes by himself, using
the secret key x he choose.

The key element that makes this attack possible is that Tn is not required to prove
to anyone that he knows xn. And it is easy to verify that any algorithm that would
be able to produce both xn and x in such a setting would also be able to solve the
discrete logarithm problem in G (which is harder than solving the DDH problem in
that same group).

This problem is then solved by requiring all the trustees to prove that they know
the decryption key matching the public key they submit. This can be done using a
protocol due to Schnorr, which is depicted in Figure 11.4 (a). The commitment of
this protocol is computed as gs for a random s ∈ Zq, the challenge is made of an
element of Zq, and the computation of the response is performed in Zq as well. At
the end of the protocol, V accepts the proof only if g f = aye.

The soundness of this proof follows from two observations:

1. If, after having submitted a commitment a, the prover P is able to provide a
response f that passes the proof acceptance test performed by V , then P is most
likely able to do so for more than one single value of the challenge e. Indeed,
if e were the only value for which P knows the correct f , then the probability
of P to complete a proof successfully would be 1/q, which would be an event
that is infeasible to observe.

2. As soon as we trust that P would be able to submit two responses f1 and f2
to two distinct challenges e1 and e2, based on a single commitment a, we also
trust that P knows x. Indeed, we can verify that x = f1− f2

e1−e2
.

The intuition behind the zero-knowledge property of this protocol is the following
one: V does not learn anything from this interaction (except for the knowledge of
x by P) because V is able to produce an interaction that follows the exact same

Internet Voting with Helios � 295

distribution, just by himself: V would pick e and f at random from Zq, then compute
a = g f /ye. This zero-knowledge property is usually called honest verifier, because
the simulation of the interaction is based on the assumption that, in a real protocol
execution, V actually picks e at random, and not as a function of a for instance. This
is not a problem, since we only use the non-interactive version of this protocol and
model the hash function as a random oracle

(a) The Schnorr protocol proves the
knowledge of the x matching a public
key y = gx.

(b) The Chaum–Pedersen protocol
proves that di is the decryption factor
computed with the xi matching public
key yi and the ciphertext component c1.

Figure 11.4: Two sigma protocols used in Helios.

11.3.3.3 Proving Correct Decryption

Honest key generation is crucial for privacy. It does not guarantee, however, that the
decryption of the tally is performed correctly. A single trustee could indeed try to
manipulate the outcome of an election by cheating when computing his decryption
factor. Consider for instance a trustee Ti who, instead of computing his decryption
factor for a ciphertext (c1,c2) as di = cxi

1 , computes and submits a factor d′i = di/gv.

As a result, the plaintext will be computed as the discrete logarithm of c2/
(∏

di
gv

)
in

base g, which adds v to the correct decryption of (c1,c2) and v votes to a candidate.
Of course, a malicious trustee will not manipulate a single ciphertext, which would
increase the total number of votes and provide evidence of malfeasance (except in
the case of approval voting), but will add a number of votes to one candidate, and
remove that same number of votes from other candidates, keeping the total correct.

This problem can be avoided by making use of a sigma protocol due to Chaum
and Pedersen [149], depicted in Figure 11.4 (b). This protocol is a kind of parallel
version of the Schnorr protocol, and is used to prove that the discrete logarithm of
yi in base g is equal to the discrete logarithm of di in base c1. Compared to the
Schnorr protocol, the commitment is now made of two group elements, computed
from a single random s ∈ Zq selected by the prover P. Furthermore, the verifier V
only accepts the proof if both g f = a1ye

i and c f
1 = a2de

i are satisfied. The soundness
and zero-knowledge properties of this protocol follow from the same arguments used
for the Schnorr protocol.

296 � Real-World Electronic Voting: Design, Analysis and Deployment

11.3.3.4 Proving Ballot Validity

A Helios ballot contains a series of questions, each with a number of possible an-
swers. For each question, the voter is allowed to pick a number of answers, defined
by the election rules: this can be just one answer, any number of answers (for ap-
proval voting) or a number within a fixed range.

For each of these answers, the ballot preparation system encrypts a “0” or a “1,”
depending on the choice of the voter, which makes it easy to multiply ciphertexts in
order to obtain an encryption of the tally. However, once the voter choices have been
encrypted, it is not possible anymore to determine what was encrypted: this is crucial
for privacy. Furthermore, thanks to the homomorphic tallying technique, individual
ballots are never decrypted. This very effective technique may open a new line of
abuse, though: a malicious voter could try to encrypt values that are very different
from 0 and 1 – say 1000 for one candidate and -999 for another. As a result, a voter
might be able to add or remove an arbitrary number of votes from any candidate.

In order to avoid this potential problem, voters are required to use sigma protocols
to prove the validity of their ballot. More precisely, the voters are required to prove
that each of the ciphertexts they submit is either an encryption of 0 or an encryption
of 1, and that the product of all these ciphertexts is an encryption of an integer lying
in the prescribed range, indicating that a valid number of answers have been selected
by the voter. (Of course, for approval voting, we can avoid that last proof since the
number of selected answers is arbitrary.)

The sigma protocols that are used are disjunctive variants of the Chaum–Pedersen
protocol, as proposed by Cramer, Damgård and Schoenmakers [176]. The Chaum–
Pedersen protocol can indeed be used by a voter to prove that a ciphertext is an
encryption of a fixed value v: compared to Figure 11.4 (b), y will take the place of c1,
c2/gv will take the place of di, and r, the randomness used to compute the ciphertext,
will take the place of xi.

As such, this protocol is not sufficient for our purpose: a voter needs to prove
that a ciphertext encrypts either 0 or 1, without revealing which one: we actually
need a disjunctive version of Chaum–Pedersen. To this purpose, we first observe that
it is easy to generate a Chaum–Pedersen proof transcript that passes the verification
procedure, even without knowing any secret, and even for a false statement: as before,
we can choose arbitrary random values for e and f , then compute a1 and a2 in such a
way that the verification equations are satisfied. This of course does not contradict the
soundness of the proof: the simulated proof that we just produced has been computed
by selecting e before a1 and a2, which will never happen in a real execution of the
protocol. But we can exploit this strategy to produce a proof that one statement out
of two is correct: the idea is to combine the computation of two proofs: one that
proves that a ciphertext encrypts 0, and one that proves that same ciphertext encrypts
1. Of course, only one of the two statements can be true. Therefore, we will produce
a simulated proof for the false statement, that we combine with an honest proof of
the true statement.

Internet Voting with Helios � 297

More precisely, the prover will produce a simulated proof transcript ((asim
1 ,asim

2),
esim, f sim) for the statement that is false, then generate commitments (areal

1 ,areal
2) to

be used for proving the statement that is true. After submitting the real and simulated
commitments to the verifier, the prover obtains a challenge e. From this global chal-
lenge, he derives the challenge for the real proof, computed as ereal = e− esim, and
complete that proof by computing the response f real . Eventually, the real and simu-
lated challenges and responses are submitted to the verifier, who checks both proofs
individually, and also checks that the sum of the challenges matches the global chal-
lenge e. Since both proofs check, and since the proof generation process is entirely
symmetric from an observer’s point of view, there is no way for any observer to de-
cide which of the two proofs is the simulated one. So, by using this technique, a
prover can demonstrate to anyone that he only encrypted 0s and 1s, and in a quantity
that satisfies the election rules. This process can easily be generalized to prove that
a ciphertexts encrypts a value that lies within an arbitrary range: simulated proofs
can be produced for all the incorrect values from the range, with a real proof being
produced for the correct value only.

So, while the honest key generation proof was crucial to privacy, the last two
proofs that we discussed guarantee the correctness of the result: all tallied ballots are
valid, and they are tallied correctly.

11.3.4 Protocol Analysis

The protocol implemented in Helios has been analyzed in a growing body of litera-
ture.

The security properties expected from Helios were outlined in the original papers:
Helios is expected to offer end-to-end verifiability. The privacy of the votes relies on
the honesty of at least one trustee. Moreover, the security of the voting client is also
crucial for privacy: a malware recording all actions of the voters would easily violate
privacy. Internally, a malicious BPS could transmit votes in the clear, in parallel with
the normal ballot preparation. Coercion resistance is only offered in a very weak
form, as usual for unsupervised voting systems: voters have the possibility to revote
if they felt coerced to vote at some moment, but the coercer will be able to observe
on the ballot tracking center that a new ballot has been submitted.

Several of these properties have been elaborated in more detail using require-
ment engineering techniques, including by Langer, Schmidt, Buchmann and Volka-
mer [359]. Volkamer and Grimm [569] also used Helios as an example in their anal-
ysis of the resilience of Internet voting systems, identifying the number of parties to
be corrupted in order to make Helios fail, in different settings.

11.3.4.1 Works on Verifiability

Shortly after the release of Helios 2.0, Kremer, Ryan and Smyth [353] analyzed the
verifiability of Helios, based on a symbolic model expressed in the applied pi calcu-

298 � Real-World Electronic Voting: Design, Analysis and Deployment

lus. Their analysis highlights the importance of eligibility verifiability, and stresses
how the use of voter aliases changes the security model.

Küsters, Truderung and Vogt [356] also highlighted the difficulties arising from
the use of voter aliases, through an attack pattern that they called clash attacks. For
instance, they consider a malicious election administrator who would know that sev-
eral voters will vote in the same way. To those voters, the administrator will distribute
a unique voter alias, hoping that this will remain unnoticed. Furthermore, assuming
that the person controlling the distribution of the BPS can guess when these voters
intend to load their BPS, the administrator feeds these voters a modified BPS that
uses fixed randomness. In this way, all these voters who share a single alias will
prepare the exact same ballots, with the same ballot tracker. These ballots will pass
cast-as-intended validity tests, since they are correctly built. Then, when the voters
submit these ballots, they will appear on the ballot tracking center, but all under a
single alias – hence the clash. Voters will not notice this, unless one of those ballots
is posted online for audit, which may make duplication visible, or if they observe
that a ballot already appears on the ballot tracking center for their alias before they
vote. Eventually, if the attack works, the election administrator can create for him-
self as many fresh voter aliases as there are clashing ballots, and use them to vote
freely in order to obtain the expected number of ballots displayed on the ballot track-
ing center. Such a scenario does not work if explicit voter ids are used, since these
voter ids would prevent clashes from happening. The same paper also discusses the
accountability of Helios, a strong form of verifiability that requires the possibility to
identify which system component failed: it was pointed out that Helios does offer
very little accountability, because most Helios operations are not authenticated by
the party realizing them.

The works that we just described all assumed that the cryptographic primitives
used in Helios presented the expected properties. Bernhard, Pereira and Warin-
schi [99], while investigating the ballot privacy in Helios, explored the lower-level
cryptographic properties of the protocols used in Helios, and of the non-interactive
zero-knowledge proofs in particular. As explained before, these proofs are made from
sigma protocols made non-interactive thanks to the Fiat–Shamir transformation. This
transformation however comes in various flavors in the literature: in the weak variant,
only the proof commitment is hashed; while in a strong variant, the proof statement
is hashed as well. The weak variant was used in Helios and Bernhard et al. show
that, given the specific way in which these proofs are used in Helios, i.e., given that
parties would be able to choose their proof statement as a function of the proof chal-
lenge, this can actually break the soundness property. Several attack scenarios are
demonstrated from there. In the most important one, a coalition of a voter with all
the trustees would make it possible to build a single ballot encrypting an arbitrarily
chosen number of votes, in such a way that this ballot would pass all the verification
procedures and even be indistinguishable from a regular ballot. In order to prevent
this, the strong Fiat–Shamir transform should be adopted in Helios.

Internet Voting with Helios � 299

11.3.4.2 Works on Ballot Privacy

Cortier and Smyth [173], in parallel with Wikström, investigated privacy properties
of Helios and observed that Helios did not do anything to prevent a voter from taking
someone else’s ballot (from the ballot tracking center, for instance) and resubmitting
it as his own. While this is a serious privacy threat in mix-net-based elections, as
demonstrated by Pfitzmann and Pfitzmann [460], the privacy impact of this possibil-
ity is much more limited in a scheme based on homomorphic tallying like Helios.
Nevertheless, situations like the following one could happen: in an election with
three voters, one voter could decide to copy someone else’s encrypted vote, and then
deduce the content of this vote from the election result. Of course, the voter who
copies the ballot needs to forfeit his own vote in order to learn the vote of another
party. Ballot copying can be prevented in Helios by using a non-malleable (NM-CPA)
encryption scheme in order to prevent the submission or rerandomized versions of
previous ballots, and by rejecting identical ciphertexts from the ballots to be included
in the tally [99, 97]. In other works, ballot copying has also been identified as a use-
ful feature of a voting system (despite its potential impact on privacy), e.g., for liquid
democracy, and variants of Helios exploiting this feature have also been proposed
(see Section 11.5.5).

In further works, it was shown that a large subset of the Helios protocol, using
non-malleable encryption and rejection of duplicate ballot, would offer ballot privacy
and independence in the sense of a simple ideal functionality [98, 96].

11.3.4.3 Miscellaneous Works

In an early work, Groth [271] analyzes the CGS protocol [178], which was a pre-
cursor of the protocol implemented in Helios. This analysis is performed in the UC
framework, and shows that the CGS protocol implements an ideal voting functional-
ity under reasonable assumptions. This analysis provides an increased confidence in
the general protocol approach that is used in Helios, but the analyzed protocol also
differs from the one in Helios in many sensible ways: the ballot preparation process
includes the voter id, voters can submit only one ballot, the Benaloh challenge was
not part of the protocol . . . An interesting feature of the use of the UC framework
lies in the very natural way in which the intended properties of the voting system are
captured, i.e., by showing that running a protocol is as good as interacting with an
ideal voting functionality that receives votes, possibly intercepted by an adversary,
and computes the corresponding tally.

11.4 Web Application Perspective
Offering strong verifiability properties does not reduce the need of a high-quality
software. From a security point of view, verifiability only makes it possible to detect

300 � Real-World Electronic Voting: Design, Analysis and Deployment

errors, while it is of course most desirable that no error happens. The privacy of the
vote also depends on the software, and is mostly orthogonal to end-to-end verifiabil-
ity. Besides, the usability of a voting system is crucial, and is also often seen as a
security feature.

Helios, since version 2.0, is a Django application and makes heavy use of
JavaScript for most of the sensitive parts of the system. In particular, the ballot prepa-
ration system is a pure JavaScript application. The code of Helios is available on
Github.2

A Helios server can be accessed from a browser and offers three main compo-
nents: it serves the election administration interface, the voting booth, and the ballot
tracking center. A single ballot verifier is also available as a separate component. Be-
sides, a Helios server offers a public API, which can be used to access all election
data (public keys, list of voters, ballots, . . .) as JSON strings. This API is the main
interface used by external audit tools.

11.4.1 The Browser Interface

The use of Helios confronts voters, trustees and election administrators with a num-
ber of uncommon features: the availability of a ballot tracker and tracking center, a
key management process for trustees, the requirement for voters to authenticate at
the end of the voting process, etc.

The Helios interface was refined on various occasions since the initial Helios de-
sign, based on user feedback and on independent studies that have been performed
(see also Section 11.5.6). Being able to run several elections within a single large
organization with a dedicated helpdesk was a source of particularly valuable infor-
mation. In particular, it showed that many of the original features of Helios become
part of voter habits very quickly.

Cultural factors also mattered in many cases: different countries use different bal-
lot and form presentation styles in their official communications, and voters tend to
express preferences for the presentation styles with which they are the most familiar.
Other aspects of Helios do not have common counterparts in the life of the voters
and provide a “clean slate” in terms of presentation. For instance, while it was feared
that asking voters to perform extra verification steps (e.g., look for their ballot on the
ballot tracking center) would be a major obstacle, we observed that voters get used
to it fairly quickly, and even complain about a lack of security if they are later invited
to vote with a voting system that does not offer these audit possibilities.

Still, some security features keep presenting usability obstacles. For instance,
the cast-as-intended verification procedure is arguably challenging to perform. The
length of the tracking numbers can also be perceived as fairly demanding when a
voter needs to perform a verification. Here, the difficulty lies in the need to have di-
gests that are reasonably efficient to compute but also guarantee collision resistance.

2https://github.com/benadida/helios-server/

Internet Voting with Helios � 301

While base64-encoded SHA-256 hashes are used for the moment, other represen-
tations and hash function choices might be beneficial. The secret key management
process can also be fairly challenging. In order to simplify the key generation process
as much as possible, Helios uses a distributed key generation mechanism that does
not tolerate the failure of any trustee. These key generation and decryption processes
are often performed by persons selected for their standing in the election and not for
their computer expertise, which is consistent with their role but often turns out to be
practically challenging, especially when the manipulation of secret data is involved.
It would be a very useful step forward to design procedures that would further sim-
plify this process and make it possible to tolerate a limited number of failures.

11.4.2 Cryptography in the Browser

Running in a browser the relatively sophisticated cryptographic operations that are
needed for the preparation of a ballot proved to be a challenging task.

The early versions of Helios made use of LiveConnect to access the Java Virtual
Machine (JVM) from JavaScript. The JVM provided secure randomness and offered
support for expensive computational operations like modular exponentiations. This
was however a major source of voter complaints, due to the unavailability of the
JVM, or due to the lack or difference of support of the JVM in various browsers.

The performance of the JavaScript interpreters included in the browsers however
considerably increased during the early years of Helios: between 2009 and 2011,
the speed of a JavaScript modular exponentiation increased by a factor of 10 to 20,
making it possible to perform the necessary computation directly inside the browser,
without relying on a JVM [45]. In 2011, the SJCL library [539] was integrated into
Helios, with the support of Emily Stark, Mike Hamburg, Tom Wu and Dan Boneh,
which made it possible to prepare a full ballot directly in JavaScript. Workers are
also used to performing most of the computation in the background, while the voters
make their choices: most of the computational work that is needed to prepare a ballot
is indeed independent of the voter choices.3

Secure randomness remained an issue for a fair amount of time. At first, en-
tropy was collected from various sources like the movements of the mouse, and then
expanded, using a mechanism inspired from the Fortuna design [235]. As an extra
measure, randomness was also provided by the Helios server together with the vot-
ing booth. While this last source of entropy does not offer any protection from the
server, it can provide a safeguard from the rest of the world in case of failure of the
local entropy sources. More recently, the JavaScript Web Cryto API was extended to
provide a source of secure randomness, which is typically collected from the system.

As of today, the Helios BPS uses JavaScript cryptography and workers for the
ballot preparation, which runs quite well in the recent browsers. When an old browser

3For instance, when computing an ElGamal ciphertext (gr,myr), the two exponentiations are inde-
pendent of m and represent at least 99% of the computational effort.

302 � Real-World Electronic Voting: Design, Analysis and Deployment

that does not support these features is used, the ballot preparation is delegated to the
Helios server. This does not change the situation regarding the verifiability: the cast-
as-intended verification just verifies a slightly different BPS. In terms of privacy, a
corrupted Helios server could violate the privacy of these voters by recording their
votes but, as discussed above, a corrupted Helios server could also serve a malicious
BPS that would leak the voter choices anyway. This strategy then seems to provide
an important usability improvement with a limited security impact.

11.4.3 Application Security

The structure of the Helios protocol considerably reduces the operational security re-
quirements of a voting server. Regarding privacy in particular, the Helios server only
needs to store public information: election descriptions, public keys, encrypted votes,
and audit data. The secret keys of the trustees never reach the Helios server and, with
the exception discussed above of old browsers using the Helios BPS, no cleartext
vote ever reaches the server either (and no cleartext vote is ever stored there). These
features makes it easy to deploy standard database replication tools for robustness,
and to closely monitor the server content during an election, without fear of privacy
loss. Still, active corruption or bugs on the Helios server might have very damaging
effects, including data losses and the corruption of the BPS.

In a similar way, bugs in the Helios voting clients might cause corruption or loss
of privacy. Several independent reviews of the Helios code have been performed and
documented. Heiderich, Frosch, Niemitz and Schwenk [302] reviewed the Helios
code, identified several potential attack sources (XSS, . . .), and proposed fixes that
have been integrated. Pouillard [469], together with a team of researchers in Den-
mark, spotted that the ballot verification procedure implemented on the Helios server
would accept some invalid votes: when voters are allowed to pick a number of can-
didates within a prescribed range, the Helios server would check the range proof,
but not verify that the range for which the validity of the vote is proven matches the
election definition (the proof would be valid, but for a wrong statement). This would
enable a malicious voter to pick a number of candidates outside of the prescribed
range, while being accepted by the Helios server – even though this fraud could be
detected by any independent election verification tool.

11.5 Helios Variants and Related Systems
A number of variants of Helios have been proposed during the last few years, and
some of them have also been implemented and used in elections. Several tools were
also designed, that provide support for the audit of elections and for specific tasks
like key generation.

Internet Voting with Helios � 303

11.5.1 Mix-net-Based Variants

A mix-net-based election, in its simplest form, works as follows: voters encrypt their
votes submit them to a server. The votes then pass through a network of mixers
who verifiably shuffle them (sequentially) in order to anonymize them (this could be
seen as shaking the urn), before the distributed decryption of the anonymized votes
happens.

This approach has some serious advantages. Most importantly, it can conve-
niently and efficiently accommodate arbitrary ballot formats, including ranked voting
or write-ins, since there is no need to prove the validity of a ballot in the encrypted
domain: validity can be checked after decryption. This advantage was the primary
motivation for the development of mix-net-based variants of Helios.

Another potential advantage is that, from an educational point of view, the vot-
ing and tallying process of a mix-net-based election mimics more closely traditional
paper elections – at least, when ignoring the technical details, which can actually be
more cumbersome than in a homomorphic election process. The tallying procedure
of a mix-net-based election is indeed considerably more complex: mixing ballots is a
computationally demanding task, and the trustee decryption procedure now requires
to decrypt at least one ciphertext per voter, instead of one ciphertext per question
in the homomorphic approach. These constraints strongly support the homomorphic
approach implemented in Helios when it can be used. Besides, the algorithms in-
volved in a verifiable mix-net are quite sophisticated, making their implementation a
fairly challenging task.

Two mix-net-based variants of Helios implementations have been described:

� Bulens, Giry and Pereira [121] made an efficient implementation based on the
HTDH2 encryption scheme, which they designed as a variant of the TDH2
scheme by Shoup and Gennaro [528], and on a proof of shuffle by Terelius
and Wikström [576, 552]. This variant has been used in dozens of elections, in
universities and private institutions.

� Tsoukalas, Papadimitriou, Louridas and Tsanakas [558] later made another im-
plementation, with a verifiable shuffle based on the Sako–Kilian [508] scheme
(following Helios 1.0) which, while being considerably less efficient, is also
considerably simpler. Zeus has been used in dozens of elections in Greece,
including some in a highly emotional context, providing an interesting experi-
ence.

11.5.2 Variants Aiming at Countering Ballot-Stuffing

The ballots displayed on the tracking center do not contain any secure personal in-
formation: the tracking center only has public voter names (or aliases) and encrypted
votes, whose preparation only requires public knowledge. As a result, a corrupted

304 � Real-World Electronic Voting: Design, Analysis and Deployment

Helios server could add, remove or modify ballots quite easily. It would of course
take the risks of being detected, especially when aliases are not used: any ballot to
be included in the tally needs to be associated to a voter name, which opens the risk
of complaints being introduced by any of the prejudiced voters. Limiting the impact
of a corrupted Helios server is still desirable.

Helios-C is a Helios variant designed by Cortier, Galindo, Glondu and Iz-
abachène [172] that aims at reducing the possibilities of ballot stuffing by relying
on a separate registration authority, which is expected to not collude with the party
recording the ballots. That authority distributes voter credentials, which are then used
to digitally sign ballots. This prevents ballot stuffing as long as no collusion happens
(and credentials are not stolen).

An alternate solution was proposed by Srinivasan, Culnane, Heather, Schneider
and Xia [537]. Here, while still relying on a separate authority, the voting process
is simplified for the voters, who now only need to store a token instead of a full
cryptographic key.

11.5.3 Variants Aiming at Perfectly Private Audit Data

The Helios audit data used for the tallied-as-cast verification contain encrypted votes.
But any encryption scheme comes with decryption keys and it may be the case that,
due to some manipulation error or some hacking, a malicious party would be able to
collect enough decryption keys to recover ballots. Besides, since the security of en-
cryption relies on computational assumptions (the hardness of the DDH problem in
this case), it is definitely possible that, in the future, someone will be able to decrypt
encrypted votes, either because of the availability of more powerful computers, or be-
cause of some algorithmic breakthrough that would provide more efficient methods
for breaking encryption.

In order to counter these potential issues, it has been proposed to use Helios
variants that would offer perfectly private audit data, or everlasting privacy towards
the public. In these variants, all the data provided by the system, and the audit data
in particular, are perfectly hiding in the sense of information theory. This means that,
no matter what key is leaked, and no matter what computational power is available
to the adversary, the privacy of the votes remains guaranteed. Still, voters need to
submit information about their vote that, for a computationally unbounded adversary
with intrusion or network control capabilities, may eventually make it possible to
recover the votes. But this kind of attack would require a significantly higher level of
preparation.

� Demirel, van de Graaf and Samarone [196] proposed a solution based on the
Paillier encryption scheme and Pedersen commitments in matching groups,
following a proposal by Moran and Naor [398]. Proposals based on a dis-
tributed mix-net acting on secret shares have also been made [119], in the
spirit of the secret-sharing based approach of Cramer et al. [177].

Internet Voting with Helios � 305

� Cuvelier, Pereira and Peters proposed another solution, based on new encryp-
tion schemes called PPATs and PPATc [186]. This approach, being based
on prime order groups instead of composite groups (like Paillier encryption),
brings practical key generation procedures and is considerably more efficient
from a computational point of view.

11.5.4 Variants Based on Full Threshold Encryption

Threshold key generation makes it possible to tolerate the failure of a limited number
of trustees, which seems highly desirable for a high-stake election. Several teams
implemented such a procedure:

� Cortier, Galindo, Glondu and Izabachène [170] and Pieter Maene [378] imple-
mented variants of the Pedersen procotol for threshold key generation [457].
The key generation is integrated in the web browser and becomes considerably
more complex, requiring several rounds of interaction between the trustees, but
better fault tolerance is also obtained.

� Neumann, Kulyk and Volkamer [409] designed an Android Application that
automates and considerably simplifies the key generation process: the trustees
are required to run the App at the same time, to perform some simple verifi-
cations, and the key generation protocol executes in the background, based on
peer-to-peer communication.

11.5.5 Variant Supporting Vote Delegation

The possibility to produce ballot copies, pointed to as a source of privacy issues in
the work of Cortier and Smyth, has also been seen as a useful feature offered by In-
ternet voting systems. An increasing number of elections indeed use vote delegation,
making it possible for a voter to delegate his vote to someone else. Examples include
liquid democracy, used in the German Pirate party.

Posting ballots on a bulletin board can provide an interesting way of implement-
ing this delegation process, with the convenience that voters may not need to explic-
itly delegate their vote to others, but could simply submit a copy of someone else’s
ballot. This idea is explored by Desmedt and Chaidos [198], who propose a variant
of Helios explicitly enabling ballot copies. In a first simple non-interactive variant,
ballot copies can be noticed by an external observer. In another variant, the voters
can produce ballot copies that are indistinguishable from any other ballot, at the cost
of interacting with their delegate.

306 � Real-World Electronic Voting: Design, Analysis and Deployment

11.5.6 Alternate Helios Frontends

Karayumak, Kauer, Olembo, Volk and Volkamer [338, 339] ran a usability analysis of
Helios, based on a cognitive walkthrough, from which they designed alternate Helios
interfaces. These alternate interfaces were also investigated through a user study.
The proposed modifications include several changes in the voting and audit process,
alternate phrasing, as well as improved consistency in the voting booth design.

Further changes in the individual verification processes were proposed by Neu-
mann, Olembo, Renaud and Volkamer [410], who discuss the possibility to delegate
the recorded-as-cast verification to third parties using an Android App and a QR-code
to simplify the access to the ballot tracking center.

Various other groups designed alternate Helios frontends, modifying various vi-
sual aspects (see [378] for instance), or translating it into various languages.

11.5.7 Audit Tools

Independent Helios election audit tools are definitely highly desirable: they provide
more resistance to corruption, they can help detect bugs, either directly in the Helios
code or in the underlying libraries, and they can even serve as a backup for election
data.

� de Marneffe designed the Helios election monitor [48]. This Web2Py applica-
tion, when given the URL of an election on a Helios server, polls the Helios
server every few minutes to download newly submitted ballots. It provides a
full bulletin board, verifies the validity of each ballot, warns about revotes,
provides graphs of the voting rates, and completes the tallied-as-recorded ver-
ification when the election results are available. The Helios election monitor
also provides a single ballot verifier. All the verification procedures in this
monitor are based on external cryptographic libraries, improving the code in-
dependence with Helios.

� Roeder designed Aethon and Pyrios [490]. Aethon is a tool providing a web
interface from which a full tallied-as-cast verification can be performed: the
auditor browser picks all audit data from the Helios server, and pushes them
back to the Aethon server, which performs the verifications and displays the
results. Pyrios is a more recent Go library, and offers similar functionalities,
except that all the verifications now run locally on the computer of the auditor.

11.6 Conclusion
Seven years after the first use of Helios in a large-scale legally binding election in
2009, Helios and its various forks are routinely used by associations and private

Internet Voting with Helios � 307

companies to run end-to-end verifiable Internet elections, and several hundreds of
thousands of votes have been verifiably tallied.

Before running this first election, we had a lot of concerns about running an end-
to-end verifiable election. What would be the reaction of the voters to the verification
steps that we propose? Would these verification features be dismissed or embraced?
How would we be able to handle auditors raising concerns about the election, espe-
cially when knowing how little accountability Helios offers? Most of these concerns
faded now. The verifiability features of Helios do not appear to prevent anyone from
voting, and we found that a surprisingly large number of voters do look for their vote
on the ballot tracking center. Furthermore, many voters start feeling that checking
a ballot tracking center should be a natural part of any remote voting system: how
could they possibly know that their vote was correctly recorded otherwise? We also
faced very few auditor complaints and, in all cases, it has been possible to dismiss
these complaints quite easily: the public nature of the Helios server content makes it
possible to collect detailed logs without creating any risk for the privacy of the votes,
and these logs showed to be very helpful for clarifying situations. Furthermore, vari-
ous simple conflict resolution procedures can also be organized, taking advantage of
the fact that Helios always keeps the link between voters and their encrypted vote.

Our assessment of the effectiveness of verifiability features also was nuanced.
While the invitation to consult the ballot tracking center was very well received by
the voters overall, we found that most organizations refuse to display a ballot track-
ing center containing voter names and to publish lists of voters. This makes ballot
stuffing fairly hard to detect by any auditor who would not have privileged access to
election data. Except for this aspect, the tallied-as-recorded aspect of the audit ap-
pears to be largely effective, with several independent tools having been built. Cast-
as-intended verification remains an important challenge, however: as of today, there
is no independent and stable ballot verifier available online, and voters are simply in-
vited to use the verifier offered by the Helios server, which is an important limitation
if a corrupted Helios server is part of the threat model. Besides, if a corrupted voting
client is part of the threat model, the verification process requires the possibility for
the voter to access a honest device at a later time, which is definitely demanding.

Similar concerns appear about the privacy of the votes: the Helios ballot prepa-
ration system remains the only convenient and largely available way of preparing a
ballot, and voters therefore essentially have to trust the Helios code regarding the pri-
vacy of their vote (or read the code that they received, which is an option for very few
people only). Again, this situation could be improved if some trusted organizations
or candidates were offering an independent ballot preparation system.

On a positive side, we found that the requirement to provide election audit data
in real time and at all steps of an election is a very effective constraint placed on
election organizers: even if they suspect that some aspects of the election will not
be verified, they can never be sure, and audit data need to be committed anyway. A
malicious Helios server trying to stuff extra ballots knows that these ballots need to
be associated to a voter, and that this is evidence of a malicious behavior if an in-

308 � Real-World Electronic Voting: Design, Analysis and Deployment

vestigation is started. In a similar way, serving a malicious ballot preparation system
always leaves evidence that can possibly be collected and investigated, even more
since the BPS is a human-readable script that is distributed without access control.
Overall, we feel that this requirement for the organizers to commit on audit data is, in
itself, already a very strong motivation for adopting an end-to-end verifiable system.

Acknowledgments
We would like to thank Vanessa Teague for her insightful comments and sugges-
tions about this text, as well as other anonymous reviewers. This chapter also largely
benefited from numerous fruitful discussions and collaborations: with Ben Adida, of
course, but also with many others, including Josh Benaloh, David Bernhard, Philippe
Bulens, Véronique Cortier, Damien Giry, Steve Kremer, Olivier de Marneffe, Ron
Rivest, Mark Ryan, Ben Smyth, Dan Wallach, Bogdan Warinschi and Douglas Wik-
ström.

	SECTION III E2E VOTING SYSTEM AND REAL-WORLD APPLICATIONS
	11: Internet Voting with Helios

