
Chapter 5

E-Voting in Norway

Kristian Gjøsteen
Department of Mathematical Sciences
Norwegian University of Science and Technology
Trondheim, Norway
kristian.gjosteen@math.ntnu.no

CONTENTS
5.1 Introduction . 103
5.2 Elections in Norway . 104
5.3 Requirements . 107
5.4 Buying a Voting System . 108
5.5 Cryptographic Protocol . 111

5.5.1 Scytl’s Proposal . 112
5.5.2 Modifications . 116
5.5.3 The Modified Protocol . 118

5.6 Deployment . 122
5.6.1 The 2011 Election . 122
5.6.2 The 2013 Election . 123

5.7 Concluding Remarks . 126

5.1 Introduction
In 2008 the Norwegian parliament authorized trials of electronic voting in Norway.
This lead to trials of electronic voting from home during the 2011 local elections and
2013 parliamentary elections.

103

104 � Real-World Electronic Voting: Design, Analysis and Deployment

The author participated in these trials from 2009 as a member of the steering
group for the 2011 trials and as a consulting cryptographer for both trials.

The following is an account of the two trials from a cryptographer’s point of
view. The account touches on more than cryptography, since the author was involved
in much more than just the cryptography.

To understand certain choices made during these trials, it is necessary to under-
stand the Norwegian electoral system and what Norwegians consider important about
elections. These topics are discussed in Sections 5.2 and 5.3.

The Norwegian government wanted to buy a suitable electronic voting system.
This process is discussed in Section 5.4. Eventually, a vendor was chosen, but we
were not entirely happy with the vendor’s electronic voting system. Section 5.5 dis-
cusses why we were unhappy and what remedy we chose.

Eventually, the electronic voting system was deployed. The results are discussed
in Section 5.6.

5.2 Elections in Norway
Norway has four different elections: municipal, county and parliamentary, as well
as elections to Sametinget, a representative body for the Sami.1 While the elections
share certain common features, there are important differences.

Before an election, each participating political party nominates a list of candi-
dates. The voter chooses one of these party lists to submit as his ballot. Before sub-
mission, the voter may modify the ballot.

� In municipal elections, the voter may modify the list by marking specific can-
didates (so-called personal votes) or writing in candidates from other party
lists. (Note that arbitrary write-ins are not allowed.)

� In county elections, the voter may modify the list by marking specific candi-
dates (so-called personal votes), but may not write in candidates from other
party lists.

� In parliamentary elections and elections to Sametinget, voters may modify the
list by reordering or deleting candidates.

For all the elections, the political parties are essentially awarded seats in pro-
portion to the number of ballots they receive. (For parliamentary elections, multiple
representatives are elected for each district.) The elections differ in how list candi-
dates are ranked after the election.

For municipal elections, candidates are ranked by the number of times they are
marked by their party’s voters or written in by other parties’ voters. Ballots with

1The Sami are Norway’s indigenous people.

E-Voting in Norway � 105

write-in candidates are split between the party the list belongs to and the parties of
the written-in candidates. (Note that while write-in candidates typically influence
which candidates are selected, they may also change the number of seats awarded to
each party.)

For county elections, the political parties are awarded seats in proportion to the
number of ballots they receive. Candidates are ranked by the number of times they are
marked by their party’s voters. (Note that there are no write-ins in county elections.)

For parliamentary elections, ballot modifications to a candidate’s order (or strik-
ing) will be discarded unless more than half of all voters have made the same change
for that candidate. Ballot modifications never change the candidate ordering for par-
liamentary elections.

The Electoral Roll

The Norwegian electoral roll is derived from a national registry run by the Norwegian
tax administration some three months before the election.

After the election, the list of who voted is considered confidential, but election
researchers may be given access to it.

The Ballot

Logically, a Norwegian ballot consists of a sequence of values. For each election,
the first of these values describes the party (possibly no party, as implied by a blank
ballot).

� For municipal elections, the remaining values describe candidates and are cho-
sen from a large (up to a few thousand) set of possible values. Their order does
not matter.

� For county elections, the remaining values describe candidates nominated by
the party and are chosen from a small (less than one hundred) set of possible
values. Their order does not matter.

� For elections to parliament and Sametinget, the remaining values describe re-
ordering or striking, and come from a small (less than sixty) set of possible
values. Their order matters.

The entire sequence of values is required to count the ballot correctly. That is, none
of these elections is equivalent to a series of (simpler) independent races.

Ballot Casting

Voters may vote in advance for roughly one month before election day. About 30%
of all voters voted in advance in the 2013 parliamentary elections.

106 � Real-World Electronic Voting: Design, Analysis and Deployment

Advance voting inside Norway is usually done in polling stations (typically in
the city hall or a local public library), although temporary polling stations may be
organized, e.g., at universities or nursing homes. Mobile voting booths are available
for those with special needs.

Voters abroad may only vote in advance at Norwegian embassies or consulates,
or they may send their ballots by mail. They may not vote on election day.

On election day, voters vote at regular polling stations.

While almost all voters use official paper ballots, almost any piece of paper may
serve as a ballot. In this case, the voter expresses his intended ballot simply by writing
it on the piece of paper. This is mostly relevant for advance voting abroad, where
voters may not have thought to acquire official paper ballots before deciding to vote.

Voters with special needs (e.g., blind voters) need help to prepare their ballot.
(The paper ballots are stored in containers marked with braille writing, so that blind
voters can choose the correct paper list. But blind voters cannot reliably modify their
ballot.) At any time, during advance voting or on election day, voters may ask for
assistance from poll workers in preparing their ballot.

Counting

After the polling stations close, the paper ballots are counted, mostly by machines.
Preliminary results usually arrive within a few hours, and accurate results are ready
by next morning.

A long time ago, there were strict formal requirements for ballots. This caused
many ballots to be discarded, and voters were reluctant to modify their ballots, since
any mistake might invalidate the ballot. Today, the principle is that as long as the
intention of the ballot is sufficiently clear, the ballot should be counted as intended.

The counted ballots are stored until after the next election. The ballots can be
made available to election researchers, but they are otherwise considered confidential
and the general public will not be allowed to inspect the ballots.

Benefits of Electronic Voting

Using electronic voting machines in polling stations would have the following bene-
fits for Norwegian elections:

� Counting time for a fully electronic election could be significantly reduced.

� Voters with special needs could modify their ballots unassisted.

For any election with a significant fraction of paper votes, counting time would
not be significantly reduced. Since Norway’s ballots are reasonably easy to count
using optical scanners, there is little to be gained in accuracy.

E-Voting in Norway � 107

Using electronic voting from home would have the following benefits for Nor-
wegian elections:

� General access would be improved. While most people in Norway live reason-
ably close to a polling station, many people do not.

� Voters with special needs could modify their ballots unassisted.

� Voters abroad could vote more easily.

5.3 Requirements
Any voting scheme is subject to a number of requirements, often shaped by long
tradition, only some of which are relevant for security.

No Influence on Outcome

The voting scheme should as far as possible not influence the election outcome. For
instance, if it is hard to modify a ballot, fewer voters will modify their ballot, which
will change the outcome of Norwegian elections.

Another example of functionality that would be suspect in an electronic voting
system is allowing the voter to search for candidate names in order to write their
name on the ballot. This could increase the number of write-in candidates relative to
the existing paper voting scheme, which could change the outcome.

Correctness

Correctness is perhaps the most important requirement for Norwegian elections. The
final count should correctly reflect the ballots cast, and moreover, the intention behind
the ballots cast. There is no requirement that official ballots should be used. A blank
ballot (or indeed any piece of paper) with a legible party name written on it will be
counted as a vote for that party.

Secrecy

Secrecy is important in Norwegian elections, and this is reflected in voting proce-
dures. Secrecy of the ballot is in a sense mandatory. You are allowed to tell anyone
what you voted, obviously, but you should not be able to prove that you are telling the
truth. Modern technology makes this difficult to enforce, but the intention is clearly
encoded in rules and regulations.

To prepare the ballot in a polling station on election day, the voter must enter an
enclosure alone. There, the voter will select and possibly modify the ballot. The voter

108 � Real-World Electronic Voting: Design, Analysis and Deployment

folds the paper ballot to hide its contents before leaving the enclosure and placing the
ballot in the ballot box.

One common mistake is to fold the ballot the wrong way so that its contents are
visible. Polling station attendants will send any voter making this mistake back into
the enclosure with instructions to come out with a correctly folded ballot.

Coercion Resistance

Coercion prevents the free exercise of the right to vote, which is essential for democ-
racy. Any system that makes coercion easier will be suspect in Norway.

Without secrecy, preventing coercion is impossible. This is one more reason for
caring about secrecy.

Since the Norwegian ballot is so complicated, so-called Italian attacks would
be possible. The number of possible ballot modifications is so large, that a random
choice of modifications is likely unique. Random modification choices will tend to
cancel out. Keeping the counted ballots secret is a countermeasure against this kind
of attack.

While poll workers do observe straightforward attempts at coercion during ordi-
nary paper voting, they also observe less obvious coercion. Often this takes the form
of trying to help other voters, and there is no explicit coercion. If challenged, the
coerced voter may not even agree that he was coerced, even though he would have
voted otherwise without the coercion.

This has important implications for mechanisms that provide resistance to co-
ercion. For instance, the mechanism must not require that the voter actively tries
to prevent coercion (à la kill codes) or recover from coercion (cancelling a coerced
ballot submission).

Verifiability

Norwegians expect the government to make mistakes. But we do not expect the gov-
ernment to deliberately try to cheat us. This level of trust means that there is no de-
mand for verifiability in Norway. This does not mean that verifiability is undesirable,
only that any verifiability must be achieved without compromising more important
properties.

5.4 Buying a Voting System
The municipalities are responsible for running elections in Norway. By 2008, munic-
ipalities had acquired many different election administration and paper ballot scan-
ning systems, of widely differing quality and capability. The central government
wanted to improve on this rather inefficient state of affairs, and decided to have an

E-Voting in Norway � 109

election administration system developed which it could later offer to municipalities
free of charge.

The Norwegian parliament had already decided to try electronic voting. The gov-
ernment felt that the best approach was limited trials of remote internet voting.

The two projects, election administration and internet voting, were combined
into one acquisition process. Since it later turned out that no single company could
assemble a good bid for both parts of the project, it seems reasonable to ask if this
was a wise decision.

The Acquisition Process

The acquisition process was organized as a “competitive dialogue,” a somewhat ob-
scure process where over a number of rounds the participating vendors would get to
influence the final specification. (Eventually, many of the proposals were not submit-
ted by individual companies, but by consortiums. The word “vendor” in the following
will also refer to these consortiums.)

One curious feature of the process was that every tender would be completely
transparent, from the proposed solution down to contract details such as financials.
There were two slightly different reasons for this transparency.

Politically the spirit of the open source movement was important, where openness
was important in and of itself. This meant among other things that the final source
code license was an item of discussion.

The project organization considered transparency a vital strategy for ensuring
both security and belief in security. One of the main goals of an election system is
to convince the losers that they really lost. This implies that security is a necessary
property for an election system, but it is not sufficient. We also need a widespread
belief in the security.

Some vendors did use the competitive dialogue process to object to this trans-
parency, even claiming that transparency was bad for security. Such arguments were
rejected and the requirement was retained.

The main unsolved security problem identified by the Norwegian government
prior to the competitive dialogue was that the voter’s computer could be compro-
mised. Any proposal must give the voter tools to preserve ballot integrity.

So-called return codes à la Chaum’s SureVote [141] and the British CESG study
[34] were a plausible solution to the integrity problem that was known to the Nor-
wegian government, but alternative solutions were still sought. In the event, no con-
vincing alternative was proposed.

While preserving confidentiality against a compromised computer was obviously
desirable, this was not a requirement since it would most likely be very difficult
without compromising usability. However, any proposal that included even a partial
solution would have a significant advantage over other proposals. In the event, no

110 � Real-World Electronic Voting: Design, Analysis and Deployment

plausible solutions to preserving confidentiality against a compromised computer
were proposed during the competitive dialogue.

One property much desired of any solution was understandability. Cryptography,
especially the kind of cryptography usually employed in common academic voting
protocols, is very hard to understand for non-experts. The Norwegian government
believed that it would be easier for the public to understand and accept simpler sys-
tems. In the event, no non-cryptographic solution was proposed.

The Proposals

The fourth round of the competitive dialogue was supposed to see preliminary sub-
missions with sufficient detail for independent security analysis. Five proposals were
submitted. One vendor submitted a detailed cryptographic proposal for part of the
voting system along with sensible and correct analysis. One submission contained a
partial description that allowed some analysis to be done. Several submissions were
sorely lacking in details, preventing any realistic analysis.

The Norwegian government requested the assistance of the security and cryptog-
raphy groups at the Norwegian universities, as well as from other groups.

Where analysis was possible, multiple issues were found, some of them serious.
Where no or partial analysis was possible, some possible issues were identified, but
largely these submissions were ignored by the external analysis teams. All issues
identified were reported to the vendors.

The fifth and final round required complete proposals. Three complete proposals
were submitted. Every proposal used return codes to protect the integrity of the ballot
from a compromised voter’s computer, though they used very different underlying
cryptographic solutions.

The same groups that participated in analysis after the fourth round now did
one more round of analysis. After minor clarifications and corrections, it was clear
that two of the proposals could plausibly be fixed to provide secure solutions. One
proposal could not be fixed.

One plausible proposal was significantly cheaper than the other two proposals,
which made the job of choosing the winning proposal easy. (At this point it should
be repeated that the government was buying both an internet voting system and an
election administration system. Internet voting was a fairly small part of the total
contract.)

The Winning Bid

The winning bid was submitted by a consortium consisting of the Norwegian com-
pany Ergo, which had previously delivered voting systems to Norwegian municipal-
ities, and the Spanish company Scytl, an electronic voting specialist.

E-Voting in Norway � 111

ballot box
decryption

service

return code
generator

auditor

Figure 5.1: The voter uses his computer and his phone to communicate with an
infrastructure consisting of four players. The decryption service and the auditor are
only active during counting.

Scytl’s proposed solution (similar to a later published version [54]) was based
on Scytl’s existing products. A brief overview of the different players and how they
communicate is given in Figure 5.1.

The voter instructs the voter’s computer which ballot to submit. The computer
encrypts the ballot, signs it on behalf of the voter and then submits it to a ballot box.

A voter is allowed to submit multiple electronic ballots and a single paper bal-
lot. If the voter submitted a paper ballot, that ballot is counted, otherwise the final
electronic ballot will be counted.

When counting begins, any electronic ballot that should not be counted is re-
moved from the ballot box. The remaining encrypted ballots are given to a decryption
service where they are shuffled and rerandomized using a Scytl-developed protocol,
somewhat similar to randomized partial checking. Finally, the shuffled ballots are
verifiably decrypted.

To implement return codes, the voter’s computer adds a special “encryption” of
the ballot which is sent to the ballot box. The ballot box does some extra work on
the special “ciphertext” to produce a new ciphertext that is sent to a return code
generator. The return code generator decrypts the new ciphertext with a special key
and applies a pseudorandom function to the result to derive the return code. The
return code is sent to the voter’s mobile phone.

As originally described, the voter had to enter a special secret number (printed
on his poll card) into the voting client to get return codes, and this step was optional.
Strictly speaking, this was neither usable nor secure, but the solution could obviously
be modified to be both usable and secure.

112 � Real-World Electronic Voting: Design, Analysis and Deployment

5.5 Cryptographic Protocol
While we believed that Scytl’s proposed cryptographic protocol could be made suf-
ficiently secure, we were not entirely happy with it. In particular, we had found nu-
merous minor problems with it during analysis, and we were not entirely sure that
we had found every flaw.

Some time after it was clear that Ergo and Scytl had submitted the winning tender,
the author realized that it was possible to improve upon Scytl’s proposed protocol,
and that it would be possible to prove positive statements about the security of the
modified protocol. The modified protocol was also significantly more efficient.

In order to understand why Scytl’s protocol was modified and what the modifi-
cations were, we must first look at Scytl’s proposal.

5.5.1 Scytl’s Proposal

We can divide the execution of Scytl’s proposed voting protocol into three phases:
setup, ballot submission and counting.

In a system based on return codes, the main challenge is for the voting infras-
tructure to deduce the correct return codes to send the voter, without looking at the
voter’s ballot.

Scytl’s solution is to construct the random-looking return code function rc in
such a way that the voter’s computer can create encryptions of the ballot and the
return code that can be related by reasonably efficient non-interactive zero knowledge
(NIZK) proofs such that it is hard to create ciphertexts with inconsistent ballot and
return code.

Scytl [54] describes a variant of the proposed protocol. We briefly sketch a
slightly modified version of this variant’s ballot submission protocol, which is suf-
ficiently similar to Scytl’s proposal for our purposes. Recall that in the Norwegian
elections, a ballot consists of a party list and a sequence of zero or more list modifi-
cations.

The protocol relies on a group G with a generator g. There is an encoding func-
tion f that maps lists and list modifications to group elements. We also have a hash
function H and two pseudorandom functions PRF1 and PRF2.

Setup

The setup phase must produce one election public key y1 satisfying y1 = ga1 , where
a1 is secret-shared among the electoral commission. A second public key y3 satisfy-
ing y3 = ga3 is produced, where the a3 is known only by the return code generator.
(Note that y2 and a2 will appear later.)

E-Voting in Norway � 113

For return codes, two symmetric keys k2 and k3 are generated for the ballot box
and the return code generator, respectively. Also a secret s is generated for each voter.

For a per-voter secret s, we define the function rc taking a list or list modification
v to a return code as follows:

r̂c(v) = f (v)yH(j||s)
1 ,

řc(v) = r̂c(v)yPRF1(k2,H(s))
1 ,

rc(v) = PRF2(k3, řc(v)).

(5.1)

The voter receives the function rc in the form of a table listing every list and list
modification v along with the corresponding value rc(v). This table is printed on the
voter’s poll card.

Ballot Submission

Ballot submission begins when the voter authenticates himself to the voting system
through his computer.

When the voter has authenticated himself, his computer receives the per-voter
secret s, the election public key y1 and the return code generator public key y3.

The computer first sends a hash of the per-voter secret H(s) to the ballot box,
which then computes PRF1(k2,H(s)) and sends the result back to the computer.

The voter enters his ballot into the computer. Recall that the ballot consists of a
party list and a sequence of zero or more list modifications. The sequence of length
l is padded with blank values to reach a given, fixed length n. Then each of these
values is encrypted independently.

To encrypt the ith value vi, the computer chooses a random number ri and com-
putes a ciphertext

(xi,wi) = (gri ,yri
1 f (vi)). (5.2)

The computer then computes an encryption of the return code under the return code
generators public key

ŵi = yri
3 yH(vi||s)

1 f (vi),

w̌i = ŵiy
PRF1(k2,H(s))
1 .

(5.3)

Note that ŵix
−a3
i = r̂c(vi) and w̌ix

−a3
i = řc(vi).

Finally, the computer generates NIZK proofs that show that the computer knows
the decryption of the ciphertext, that the ciphertext decrypts to a valid vote, and that
the partial ciphertext is consistent with (xi,wi) in the above sense. To simplify the
NIZK proofs, a number of secondary values are computed as well.

The computer then submits the ciphertexts (x1,w1), . . . ,(xn,wn), the partial ci-
phertext w̌, the NIZK proofs, a number of secondary values and a signature on ev-
erything to the ballot box.

114 � Real-World Electronic Voting: Design, Analysis and Deployment

The ballot box verifies the signature and the NIZK proofs. It then passes every-
thing to the return code generator.

The return code generator also verifies the signature and the NIZK proofs. Then
it computes the ith return code as PRF2(k3, w̌ix

−a3
i) = rc(vi). (The return code gener-

ator must know the result of w̌ix
a3
i for the padding value, so that it can determine the

real ballot length l.) It sends some of the values rc(v1), . . . ,rc(vl) to the voter’s mobile
phone, signs a hash of the ciphertexts (x1,w1), . . . ,(xn,wn) and sends the signature to
the ballot box.

Upon receipt of the signature, the ballot box stores the voter’s ciphertext and
sends the signature to the voter’s computer.

The voter’s computer reports success. When the text message with the return
codes arrives, the voter consults his table to verify that he received the correct return
codes.

Counting

At the start of the counting phase, the ballot box selects the ballots that should be
counted. If a voter submitted a paper ballot, all their electronic ballots are discarded.
Otherwise, all but the last electronic ballot are discarded.

Before the encrypted ballots to be counted are passed to the decryption ser-
vice, they are “compressed.” An encrypted ballot consisting of n encryptions
(x1,w1),(x2,w2), . . . ,(xn,wn) of the values v1,v2, . . . ,vn is compressed to the cipher-
text c = (x,w), where

x =
n∏

i=1

xi and w =
n∏

i=1

wi.

When the decryption service decrypts this ciphertext, it decrypts to the product

n∏
i=1

f (vi).

The group G lies inside a prime field, and the function f encodes values vi to
field elements corresponding to small primes. By factoring the product, the values
v1,v2, . . . ,vn can be recovered up to order.

In the event that order matters, we can use the equations

x =
n∏

i=1

xi
i and w =

n∏
i=1

wi
i.

which will produce the decryption

n∏
i=1

f (vi)
i.

E-Voting in Norway � 115

Since values cannot repeat, this allows us to recover all the values in the correct order.

The decryption service first shuffles the compressed ballots using a Scytl-
designed verifiable shuffle [53], then it verifiably decrypts the ballots.

The verifiable shuffle depends on the underlying cryptosystem being homomor-
phic: the decryption of the product of two ciphertexts is the product of the decryptions
of the two ciphertexts.

We describe the shuffle only for a square number n2 of ciphertexts.

The process begins when the shuffler receives the ciphertexts c(0)1 ,c(0)2 , . . . ,c(0)n2 to
be counted from the ballot box. It rerandomizes and shuffles the ciphertexts several
times, creating c(1)1 , . . . ,c(1)n2 , c(2)1 , . . . ,c(2)n2 , etc.

The verifier chooses a partition P0 of the ciphertexts {c(0)i } into n subsets each
containing n ciphertexts and sends this partition to the shuffler. The shuffler reveals
the corresponding partition P′0 of the ciphertexts {c(1)i }, and proves that for each
subset S ∈ P0 and corresponding subset S′ ∈ P′0, the product of the ciphertexts in S
and S′ have the same decryption.

Next, the verifier chooses a partition P1 of the ciphertexts {c(1)i } into n subsets
each containing n ciphertexts, such that for any S ∈ P′0 and S′ ∈ P1, the intersection
of S and S′ contain exactly one ciphertext. The shuffler reveals the corresponding
partition P′1 of the ciphertexts {c(2)i }, and proves that for each subset S ∈ P1 and
corresponding subset S′ ∈ P′1, the product of the ciphertexts in S and the product of
the ciphertexts in S′ have the same decryption.

If the decryption service simply modifies or replaces some ballots, it is extremely
unlikely that it will be able to provide the correct proofs for corresponding subsets.
The decryption service could try to make modifications that cancel out, but since he
is unlikely to be able to predict the partition chosen by the verifier, this will also most
likely fail.

The verifier, on the other hand, will be unable to trace ciphertexts through the
subsequent shuffles. This means that even though he knows both who submitted each
input ciphertext and the decryption of each output ciphertext, he cannot correlate the
two.

Challenges

As is well known, understanding and analyzing cryptographic protocols is a very
hard problem, and a lot of work is involved in establishing confidence in a protocol’s
correctness. The cryptographic discipline of provable security has been developed to
make it easier to establish this confidence.

Careful analysis of the proposed protocol shows that the voter’s computer does
not actually prove that the ballot and the return code are consistent. While it is not
difficult for the voter’s computer to create an encryption of a random return code,

116 � Real-World Electronic Voting: Design, Analysis and Deployment

this is not sufficient to actually break the system, since the voter should notice the
incorrect return code. We were not able to find unfixable attacks against the system
during our brief analysis.

We tried to prove various properties for Scytl’s proposed protocol or minor varia-
tions of it, but we were unsuccessful. Obviously, we cannot claim that it is impossible
to prove interesting properties about this protocol, but it would seem to be difficult.

The conclusion was that, after various minor changes, we were unable to break
Scytl’s proposed protocol, but we were also unable to argue convincingly for its
correctness. While the protocol was considered acceptable, it did not inspire great
confidence.

5.5.2 Modifications

We were least happy with the ballot submission phase of Scytl’s proposed proto-
col. A short time after it was clear that Ergo and Scytl would win the tender, the
author realized that there was an alternative to Scytl’s proposed way of computing
and encrypting return codes. The essential insight was that we were already using a
homomorphic cryptosystem, namely ElGamal, which allows us via ciphertext opera-
tions to apply certain functions to the contents of ciphertext. What if the return code
function was one of those functions?

Originally, all of the modifications to Scytl’s protocol were conceived at the same
time, but for ease of understanding, we introduce them as two separate modifications.
The first modification is about how we compute the return codes. The second mod-
ification reduces the amount of work the voter’s computer has to do, and simplifies
handling the per-voter secret.

Computing Return Codes

The author had earlier proven that the exponentiation map ζ 7→ ζ s [254] could be
considered a pseudorandom map when the elements v were restricted to carefully
chosen subsets of the group elements.

Again, we begin by defining the return code function rc. For a per-voter secret
s, we define the function rc taking a list or list modification v to a return code as
follows:

řc(v) = f (v)s,
rc(v) = PRF2(k3, řc(v)).

(5.1′)

Observe now that given the encryption (x,w) of f (v) from (5.2), (xs,ws) is an en-
cryption of řc(v).

This suggests the following approach. To encrypt the ith value vi, the computer
chooses a random number ri and computes (xi,wi) as in (5.2). It also computes the

E-Voting in Norway � 117

ciphertexts
(x̄i, w̄i) = (xs

i ,w
s
i)

(x̌i, w̌i) = (x̄i,y
ris
3 f (vi)

s).
(5.3′)

Note that wix
−a1
i = f (vi) and w̄ix̄

−a1
i = řc(vi) = w̌ix̌

−a3
i .

The computer creates three NIZK proofs. The first proves that it knows the de-
cryption of (x1,w1), . . . ,(xn,wn). The second proves that the ciphertext (x̄i, w̄i) has
been created by raising (xi,wi) to the correct power. The third proves that the two
ciphertexts (x̄i, w̄i) and (x̌i, w̌i) decrypt to the same value. All of these NIZK proofs
are completely standard and quite efficient.

One of the significant computational improvements relative to Scytl’s proposed
protocol is that there is no longer any need for a computationally expensive proof
that the ciphertext contains a valid ballot. (This proof is needed in Scytl’s proposed
protocol to prevent an attack that destroys a ballot. After our modifications, invalid
ballots will almost always result in incorrect return codes, which the voter should
notice.)

Two problems remain. First of all, the protocol is computationally heavy for the
voter’s computer. Second, handling the per-voter secret s is complicated. (The orig-
inal Scytl proposal envisaged the user typing it into the computer, which does not
work very well. Presumably, a new infrastructure player could be introduced to han-
dle these secrets.)

Øberg [426] analyzed essentially this protocol and proved a number of strong
security properties. In fact, this protocol is slightly more secure than the protocol
used in the trials. But handling the per-voter secret would have been a significant
problem for deployment.

The Ballot Box Takes Over

The goal of the next set of modifications is to reduce the computational work at the
voter’s computer and remove the need for distributing the per-voter secret s. The
changes required for this do not come for free. The computational workload for the
infrastructure increases slightly and the security properties of the protocol change.

There are two stages to this solution. The first is that only the ballot box should
know the per-voter secrets, and it should create the ciphertexts (x̄i, w̄i) and (x̌i, w̌i).
Intuitively, this seems unsafe, but careful analysis actually shows that this is actually
safe.

Shifting the computational burden like this introduces a new problem. Unlike the
client, the ballot box does not (and must not) know the voter’s ballot, so (x̌i, w̌i) can-
not be computed as in (5.3′). Thus the second stage of our solution was to tamper with
the election keys, which allows the ballot box to turn a ciphertext encrypted under
the election public key into a ciphertext encrypted under the return code generator’s
public key.

The setup phase must now be changed as follows. First, the per-voter secret s

118 � Real-World Electronic Voting: Design, Analysis and Deployment

should still be generated, but all of them should be given to the ballot box. Next,
a third public key y2 satisfying y2 = ga2 = y3y−1

1 is produced, where a2 is known
only by the ballot box. Note that the three decryption keys now satisfy a2 = a3−a1
modulo the group order.

The return code function rc remains as defined in (5.1′).

To encrypt the ith value vi, the voter’s computer chooses a random number ri
and computes (xi,wi) as in (5.2). It also creates a single NIZK proof, proving that it
knows the decryption of (x1,w1), . . . ,(xn,wn). The computer then signs the ciphertext
and the NIZK proof on behalf of the voter and passes it on to the ballot box.

The ballot box verifies the signature and the NIZK proof of knowledge. The
ballot box knows the voter’s secret s and for each ciphertext (xi,wi) computes two
ciphertexts

(x̄i, w̄i) = (xs
i ,w

s
i),

(x̌i, w̌i) = (x̄i, w̄ix̄
a2
i).

(5.3′′)

Note that w̄ix̄
−a1
i = r̂c(vi) = w̌ix̌

−a3
i , since

w̌ix̌
−a3
i = w̄ix̄

a2
i x̄−a3

i = r̂c(vi)x̄
a1
i x̄a2−a3

i = r̂c(vi)x̄
a1+a2−a3
i = r̂c(vi).

The ballot box also produces two NIZK proofs showing that it did its computations
correctly. These NIZK proofs are completely standard and quite efficient.

5.5.3 The Modified Protocol

We now give a brief summary of the modified protocol [255].

Setup

The setup phase must produce one election public key y1 satisfying y1 = ga1 , a ballot
box public key y2 satisfying y2 = ga2 and a return code generator key y3 satisfying
y3 = ga3 . The three public keys satisfy y3 = y1y2. The election decryption key a1 is
secret shared among the electoral commission, while a2 is given to the ballot box and
a3 is given to the return code generator.

For each voter, a secret number s is generated and given to the ballot box. Also,
for each voter, a random injective function h from { f (v)s} (where v ranges over all
the lists and list modifications) to the set of return codes is chosen. These functions
are given to the return code generator.

For a per-voter secret s and random injective function h, we define the function
rc taking a list or list modification v to a return code as follows:

řc(v) = f (v)s,
rc(v) = h(řc(v)).

(5.1′′′)

E-Voting in Norway � 119

The voter receives the function rc in the form of a table listing every list and list
modification j along with the corresponding value rc(v).

Ballot Submission

Ballot submission begins when the voter authenticates himself to the voting system
through his computer.

When the voter has authenticated himself, his computer receives the election pub-
lic key y1.

The voter enters his ballot into the computer. Recall that the ballot consists of a
party list and a sequence of zero or more list modifications. The sequence is padded
with blank values to reach a given, fixed length. Then each of these values is en-
crypted independently.

To encrypt the ith value vi, the computer chooses a random number ri and com-
putes a ciphertext

(xi,wi) = (gri ,yri
1 f (vi)). (5.2′′′)

The computer generates a non-interactive zero knowledge proof of knowledge
that shows that the computer knows the decryption of the independently encrypted
ciphertexts.

The computer then submits the ciphertexts, the NIZK proof and a signature on
everything to the ballot box.

The ballot box verifies the signature and the NIZK proof. For each ciphertext
(xi,wi), it then computes a ciphertext and a partial ciphertext:

(x̄i, w̄i) = (xs
i ,w

s
i),

w̌i = w̄ix̄
a2
i .

(5.3′′′)

It also creates two NIZK proofs showing that the ballot box has computed these
values correctly.

The ballot box then sends everything it received, the ciphertexts and partial ci-
phertexts and the NIZK proofs to the return code generator.

The return code generator verifies all the NIZK proofs and the voter’s signature,
then for each ciphertext (x̄i, w̌i) computes the return codes using the formula

h(w̌ix̄
−a3
i).

If any of these computations fail (which can only happen if w̌ix̄
−a3
i is not in the

domain of h), the return code generator knows that the original ballot is invalid and
informs the ballot box of this fact. In this case, the ballot box will reject the ballot
and inform the voter’s computer that the ballot was rejected.

120 � Real-World Electronic Voting: Design, Analysis and Deployment

Otherwise, a subset of the return codes is sent to the voter’s phone. The return
code generator then signs a hash of the encrypted ballot (which consists of n cipher-
texts (x1,w1), . . . ,(xn,wn) and a NIZK proof of knowledge π)

H(voter identity,(x1,w1), . . . ,(xn,wn),π) (5.4)

and sends this signature to the ballot box, which verifies it and sends it on to the
voter’s computer.

When the voter’s computer receives a valid signature on the encrypted ballot it
submitted, it informs the voter that the ballot has been correctly submitted.

When the voter’s phone receives the return codes, the voter uses the function rc
to verify that the return codes match the submitted ballot. When the voter’s computer
says that the ballot has been correctly submitted, the voter accepts the ballot as cast.

Counting

Counting proceeds exactly as in Scytl’s original protocol. The only minor difference
is that the role of the auditor was clarified.

The auditor receives the entire contents of the ballot box. It also receives a list of
every ballot seen by the return code generator, in order. The auditor verifies that the
two parties agree on which ballots were submitted.

Next, the auditor receives a list of ballots that the decryption service received
from the ballot box. Based on the contents of the ballot box, the auditor recomputes
which ballots should be counted and compares this list with the list received by the
decryption service.

Finally, the auditor participates in the decryption service’s verifiable shuffle and
also verifies the final decryption.

Verifiability

The protocol can be modified to provide limited verifiability. The voter’s computer
presents the hash of the submitted ballot (5.4) and the return code generator’s signa-
ture to the voter. The ballot box publishes a signed list of hashes of accepted ballots.
Finally, the auditor verifies the ballot box’s list.

The voter can now download the ballot box’s list of hashes and verify that the
hash displayed by the computer is present in the list. In the event that the hash is not
present, the return code generator’s signature allows the voter to complain convinc-
ingly.

What Was Achieved?

The main achievement is that it is possible to prove clearly stated security claims
about this protocol relative to reasonable cryptographic assumptions. (Though there
remains a technical problem related to the proof of knowledge [256].) A secondary
achievement was that the computational load was significantly reduced.

E-Voting in Norway � 121

Provided that at most one of the infrastructure players is corrupt and the voter
follows the protocol correctly, we can prove that:

� If the auditor accepts the result, at most one ballot per voter was counted.

� If the voter accepts the ballot as cast as intended, and does not later revote
or complain about a forgery, the ballot is counted as intended up to certain
changes to the list modifications.

� If the voter’s computer and the return code generator are both honest and the
voter does not complain about forgeries, the content of the voter’s ballot re-
mains private.

� A corrupt return code generator learns the number of list modifications in each
ballot submission, and if a voter submits multiple ballots, learns where these
ballots differ.

We developed attacks against the protocol to prove that the above claims cannot be
significantly strengthened.

The proof is a mix of classical protocol analysis techniques and standard mathe-
matical analysis relying on variants of the Decision Diffie–Hellman problem.

The Decision Diffie–Hellman variants are used to show that no single infrastruc-
ture player can see the ballots encrypted by honest computers. A crucial ingredient
is the computer’s proof of knowledge which prevents a corrupt ballot box from using
the return code generator as a decryption oracle.

During ballot submission, the voter’s computer will not accept a ballot unless
both the ballot box and the return code generator has seen the ballot. This ensures
that the auditor can detect any cheating by either the ballot box or the return code
generator. Furthermore, the auditor can ensure that the decryption service receives
the correct encrypted ballots.

The proofs produced by the decryption service ensures both that the decryption
service cannot cheat and that the auditor cannot learn anything about particular en-
crypted ballots.

If we accept the basic premise underlying the security proof (that at most one in-
frastructure player is compromised), the cryptographic protocol ensures correctness
and secrecy, and it makes a decent attempt at providing coercion resistance. Even
though verifiability is not important, it can be modified to provide limited verifiabil-
ity. The cryptographic protocol was therefore a good match for Norwegian elections.

Further Improvements

After the 2011 election, the author developed a second version of the protocol [256]
(incorporating ideas worked out by Lund [373]) that significantly reduced the com-
putational effort required. There are two main ideas behind this improvement.

122 � Real-World Electronic Voting: Design, Analysis and Deployment

First, instead of encrypting every ballot value separately, all the values were in-
cluded in a single encryption. Technically, the encryption key now consists of n val-
ues y11,y12, . . . ,y1n, and given a (padded) ballot v1,v2, . . . ,vn, the computer chooses
a single random number r and computes

(x,w1,w2, . . . ,wn) = (gr,yr
11 f (v1),yr

12 f (v2), . . . ,yr
1n f (vn)). (5.2′′′′)

The ballot box key a2 must now be split into n parts a21,a22, . . . ,a2n, and the ballot
box now computes two ciphertexts

(x̄, w̄1, w̄2, . . . , w̄n) = (xs,ws
1,w

s
2, . . . ,w

s
n),

(w̌1, w̌2, . . . , w̌n) = (w̄1x̄a21 , w̄2x̄a22 , . . . , w̄nx̄a2n).
(5.3′′′′)

The return code generator’s key a3 is also split into n parts a31,a32, . . . ,a3n, and the
return code generator computes the ith return code as

h(w̌ix̄−a3i).

Second, the NIZK proofs were replaced by batch variants. This amounts to a
significant performance improvement.

The security proof was also significantly improved, and we were able to improve
our security claims through better modelling of certain underlying infrastructures.

5.6 Deployment
As 2010 progressed it became clear that remote internet voting was politically con-
troversial. The main objection was coercion, and the politicians were not convinced
by the countermeasures planned (i.e., revoting). Most opposition parties declared
loudly that they would vote against remote internet voting. As the debate unfolded,
it turned out that the largest (by far) of three governing parties was also essentially
opposed to remote internet voting.

Curiously, even though there was a clear majority in parliament essentially op-
posed to remote internet voting, the three government parties (which commanded a
majority in parliament) voted to go through with trials during the 2011 local elec-
tions.

Due to political controversy, the decision to hold a new trial in 2013 was not
made immediately after the 2011 trial. Until the second half of 2012, little work was
done on preparing a new trial. When the government eventually did decide to hold a
new trial, there was limited time for new developments.

5.6.1 The 2011 Election

A small number of municipalities were selected for the 2011 trial, with approxi-
mately 160,000 voters in total. Two government organizations were selected to run

E-Voting in Norway � 123

the ballot box and the return code generator, while the responsible government de-
partment would run the decryption service. A professional election observer was
hired to run the auditor.

Scytl produced the implementation of the software. The software that would run
on the voter’s computer was delivered via a web browser. The user interface was
a fairly standard web application, but when the voter pressed the button to submit
his ballot, that ballot was sent to a Java applet running in the browser, which would
then run the voting protocol and deal with all the cryptography. The Java applet did
not have a user interface and was, provided the voter’s web browser was correctly
configured, hidden from the voter.

The trial was largely uneventful. Most of the mishaps were in the election ad-
ministration system. There was one very interesting problem with the internet voting
system, however. Because of problems at the printer service responsible for print-
ing poll cards, incorrect return codes were printed on some poll cards. This mainly
affected one of the larger municipalities participating in the trials.

Though there exists no exact data on the number of errors, the best available esti-
mate is that about 1% of the poll cards in the affected municipality were printed with
incorrect return codes. Out of the nearly 50,000 eligible e-voters in that municipality,
about 8,500 voters chose to cast an electronic vote.

It seems reasonable to assume that opting for electronic voting and receiving a
misprinted poll card are independent events. In other words, if our assumptions hold,
we would expect that about 85 voters both voted electronically and received a mis-
printed poll card. During voting, misprinted poll cards caused 74 voters to call the
election help desk to report incorrect return codes. That 74 out of an estimated 85
voters noticed the incorrect return codes is a remarkably high number. (Coinciden-
tally, during earlier pre-election pilots there was a self-reported 90% verification rate,
which is remarkably consistent with the above numbers.)

Unfortunately, the estimate on the number of misprinted poll cards is too uncer-
tain to say anything about how efficient return codes are as a security mechanism for
detecting certain attacks. The best we can say is probably that if a corrupt computer
just tampers with the ballot, the probability of discovery may very well be large.

During the local elections, 28,001 voters voted electronically. A total of 55,785
electronic ballots were cast in the two available contests (municipal elections and
county elections). Of these, 2428 ballots were cancelled by re-voting, of which 653
by a paper vote. This makes up 4.35% of the votes.

While this does indicate that many voters were aware that they could re-vote, it
does not indicate that voters in general could use this countermeasure against coer-
cion.

124 � Real-World Electronic Voting: Design, Analysis and Deployment

5.6.2 The 2013 Election

The principal problem with the 2011 trial was the Java applet used to do the cryp-
tography in the voter’s computer. A significant number of voters found it hard to
establish and maintain a working Java web browser installation. Java in the browser
was also a significant general security liability.

While the desirability of Java had decreased significantly since 2010, the effec-
tive (and recognized) capabilities of JavaScript with respect to cryptography had in-
creased significantly over the same time period. Therefore it was decided to develop
a JavaScript implementation of the cryptography for the voter’s computer.

It was also decided to use the further improvements to the cryptographic protocol
described at the end of Section 5.5.3. Since the part that ran on the voter’s com-
puter had to be completely redone anyway, the effort involved in modifying the other
parts of the system was modest. The performance improvements would significantly
benefit a JavaScript implementation.

While verifiability was never important for the politicians or the general public, it
was still felt that improving verifiability would be worthwhile. This was implemented
more or less as described in Section 5.5.3.

Another area for improvement was the verifiable shuffle used during decryption.
It was felt that a proper non-interactive proof of shuffle would be an improvement,
and some work was done to identify a suitable shuffle to implement or buy an im-
plementation of. Unfortunately, this turned out to be impractical and was not done
before the 2013 trial.

A Bug with Consequences

About half-way through advance voting, a “statistical anomaly” was discovered with
some test data. After a brief investigation, a serious bug was found in Scytl’s imple-
mentation.

For a long time, cryptography in JavaScript was difficult since there was no stan-
dard source for randomness. Eventually, this was solved by entropy gathering code
and documented interfaces in modern browsers providing pseudorandomness suit-
able for cryptography.

Scytl’s JavaScript cryptography relied on a deterministic pseudorandom bit gen-
erator seeded with randomness extracted by entropy gathering code and delivered by
whatever randomness sources were available in the browser. While one could imag-
ine simpler constructions, this is a reasonable architecture.

Unfortunately, Scytl’s generator implementation replaced its state with a fixed,
public state after every invocation. The implication is that the first time Scytl’s cryp-
tography used the generator, it would provide proper randomness. But for any subse-

E-Voting in Norway � 125

quent use, the generator would provide the exact same response,2 and this response
was completely predictable by anyone.

Looking at the equations in Section 5.5.3, we see that a single random number
r appears in (5.2′′′′). Since the first use of the generator returns proper randomness,
one could hope that the encryption would be properly done.

However, due to the way the random number was sampled, the generator was
often used more than once, and the result would be a fixed random number. The
consequence was that about 60% of all ballots submitted before the bug was fixed
were encrypted with the same, known random number. Anyone observing any such
ciphertext could trivially decrypt it.

Unfortunately, the remaining ballots were not secure. The voter’s computer also
generates a proof of its knowledge of the ballot encrypted. It turns out that when
this proof is generated with predictable randomness, it reveals the randomness r,
which in turns reveals the ballot. (A Schnorr proof is used to prove knowledge of
the random number r used for encryption, but when you know the randomness used
in the Schnorr proof, you can easily compute r.) The consequence was that anyone
observing any such ciphertext could easily decrypt it.

While all of this was bad, it was not yet a disaster. The system was designed so
that the cryptography protected against the compromise of the ballot box, the return
code generator and the auditor. But when these players were not compromised, the
cryptography was no longer a single point of failure. For example, the encrypted
ballot was sent from the voter’s computer to the ballot box through an encrypted
channel (TLS), so no eavesdropper would see the ciphertexts.

The ballot box and the return code generator were well-protected systems and
very few people (none of which were Scytl employees) had access to them. After the
bug was discovered, the number of people who had access was reduced even further
and security was tightened even further. A subsequent audit of all logs concluded that
the encrypted ballots had not leaked. During counting and auditing, great care was
taken to ensure that encrypted ballots did not leak.

The conclusion was that this had been a cryptologic disaster, since the cryptology
completely failed to protect the confidentiality of the ballots. However, fortunately
it was only an electoral near-disaster, since other security measures allowed us to
conclude that no ballots leaked.

Not All Bad Things Must Come to Pass

During the response phase, we recalled that the cryptologic specification [256] spec-
ified that the return code generator should compute the hash to be signed as in (5.4).
When the computer’s random numbers are replaced by fixed values, this hash de-
pends only on the voter’s identity and his ballot, nothing else.

2The generator was periodically reseeded, but this seems not to have saved the day.

126 � Real-World Electronic Voting: Design, Analysis and Deployment

This would not be an extra problem for the system as originally designed [256].
But after the design, the system had been modified to provide limited verifiability as
described in Section 5.5.3. And as part of these modifications, the hashes computed
by the return code generator had been published on the internet.

Based on the available evidence, it did at first look as if several thousand voter-
ballot pairs had been published on the internet, essentially in clear text.

Fortunately, it quickly transpired that Scytl’s implementation deviated (a per-
fectly harmless and accepted deviation) from the specification by also including an
authentication token in the hash. This authentication token contained sufficient ran-
domness to erase any connection between the ballot and the hash. There was no
electoral disaster.

In passing, it is interesting to note that publishing the hashes actually breaks the
security proof. Adding some randomness before hashing (like Scytl’s implementa-
tion did) makes the proof work again.

Why Did the Bug Go Undiscovered?

Any manual testing of Scytl’s generator (e.g., by invoking the generator repeatedly
from the JavaScript console) would have revealed the bug. A thorough code review
should also have revealed the bug. A visual inspection of any one of the numerous
test datasets generated during testing would also have revealed the bug. (In fact, the
bug was discovered essentially by visual inspection of test data, but far too late.)

It is clear that this bug should have been discovered, but it was not discovered.
Why?

Clearly, such a vital piece of cryptographic code should have been carefully writ-
ten, but it was not. Scytl’s internal code reviews failed to spot the bug.

The Norwegian government hired contractors to do an independent code review
of critical cryptographic code. Unfortunately, due to time limitations, the code that
would run on the voter’s computer was excluded from the review. To the author, it
seems likely that the contractors would have found the bug if they had looked at the
code.

Before the 2011 elections, numerous test datasets were generated and a large
number of statistical tests were applied to the ciphertexts. Due to the limited time
available, these tests were not repeated ahead of the 2013 elections. It is certain that
the statistical tests used in 2011 would have discovered the bug.

Obviously, the bug should never have been in the code. But it seems clear that if
the decision to do trials in 2013 had been made in a more timely fashion, this bug
would have been discovered.

E-Voting in Norway � 127

5.7 Concluding Remarks

Politicians Worry about Coercion

Before the two trials, the politicians’ main worry was coercion. There is no solid
evidence that coercion would be a problem for a nationwide election, but the two
trials and their evaluation did not provide any evidence to the contrary, namely that
coercion would not be a problem.

Norwegian voters abroad are allowed to vote by mail, a form of voting highly
susceptible to coercion. It is the author’s opinion that if coercion is a real problem,
Norwegian voters abroad will be better served by internet voting than by the current
system.

The then government lost its parliamentary majority in the 2013 elections, and
the new majority installed a minority government. The new government has decided
not to have any further trials of this electronic voting system. In fact, there seems
to be a complete lack of enthusiasm for electronic voting in general, and there are
currently no plans for electronic voting of any kind.

The World Has Changed

Since the system was designed, the world has also moved on. The system relies abso-
lutely on the independence of the voter’s computer and his phone, and in particular,
that if the voter’s computer is compromised, the voter’s phone will not be compro-
mised. This was a reasonable assumption in 2009–10. What about today?

Many modern phones will now happily forward text messages to their owner’s
computer, and this forwarding is relatively easy to turn on. If a compromised com-
puter can prevent the return code generator’s text message from reaching the voter,
the compromised computer will be able to vote without the user noticing.

Furthermore, modern phones have begun to cooperate more closely with comput-
ers. This means that if the voter’s computer is compromised, it is much more likely
that the voter’s phone could also be compromised.

Finally, it turns out that many people now use modern phones instead of comput-
ers. Forcing these people to use a computer to vote will be quite unnatural (which
was an issue during the 2013 election), but allowing them to vote from their phone
compromises the protocol’s security properties.

Since the underlying assumptions may no longer be valid, it seems reasonable to
doubt the security of the system. On that basis, it seems perfectly reasonable not to
do any further trials.

Nobody Cares about Bugs

Curiously, nobody cared about the near-disaster caused by the bug in the random
number generator. The closest the bug came to being discussed in the press was a

128 � Real-World Electronic Voting: Design, Analysis and Deployment

complaint about the title of the government’s press release. It is clear that people in
general and politicians in particular do not care about the same things as security
experts and cryptographers.

	SECTION II REAL-WORLD E-VOTING IN NATIONAL ELECTIONS
	5: E-Voting in Norway

