
Chapter 7

Practical Attacks on
Real-World E-Voting

J. Alex Halderman
University of Michigan

CONTENTS
7.1 Introduction . 143
7.2 Touchscreen DREs . 144

7.2.1 Diebold . 145
7.2.2 Top to Bottom . 149
7.2.3 The Test of Time . 150
7.2.4 Around the World . 151

7.3 Internet Voting . 157
7.3.1 The Washington, D.C., Internet Voting System 158
7.3.2 Estonia’s Internet Voting System . 162
7.3.3 The New South Wales iVote System . 165

7.4 Conclusion . 169

7.1 Introduction
Many democracies rely on e-voting systems for binding elections, whether for in-
person voting at poll sites or for remote voting over the Internet. (See Ch. 3 for
an overview of the current state of e-voting worldwide.) Yet in practically every case
where a fielded e-voting system has been publicly scrutinized by capable independent
security experts, it has turned out to have serious vulnerabilities with the potential to

143

144 � Real-World Electronic Voting: Design, Analysis and Deployment

disrupt elections, compromise results, or expose voters’ secret ballots. This chapter
highlights some of the most significant results from these studies and attempts to
explain why real-world e-voting security failures are so widespread. It focuses on
two classes of systems: poll-site DREs (Section 7.2) and online voting (Section 7.3).

E-voting faces a wide variety of potential attackers beyond those considered in
traditional elections. These include insider attacks from system administrators, cy-
bercriminals working for dishonest candidates, “hacktivists” seeking to disrupt elec-
tions as a form of political protest, and even sophisticated nation-states applying of-
fensive cyberwarfare capabilities. We can roughly divide these attackers’ goals into
three categories: (1) Tampering with the election outcome, e.g., to favor particular
candidates; (2) Discovering how people voted, e.g., to retaliate against those who
voted against the attacker’s preferred candidates, as a means of enforcing vote buy-
ing or coercion; and (3) Disrupting or discrediting the election process, e.g., through
denial of service, conspicuous tampering, or the false appearance of such problems.

Defending against all these potential attacks simultaneously is difficult, for sev-
eral reasons. First, some of the central security properties that an e-voting system
needs to provide are in tension. Countermeasures against vote tampering—such as
backups, logs, and receipts—tend to make it harder to strongly protect ballot secrecy.
Likewise, mechanisms for protecting ballot secrecy—such as encrypting voted bal-
lots and avoiding incremental backups—make detecting and responding to compro-
mise more difficult. Second, election software tends to be more complex than one
might naively assume, creating large numbers of opportunities for bugs and vulner-
abilities to occur. Third, even if the code that’s supposed to be running an election
system is perfect, there is no way to guarantee that it is the actual code (and the only
code) that is running on election day.

Elections are not just an ordinary application that has to be kept safe. Given the
money and political power in play during a high-stakes election for public office,
the incentive to cheat is enormous, and the consequences of a fraudulent outcome
could threaten social order and national sovereignty. Election systems are critical
infrastructure, as important to defend as the power grid or financial system. Yet most
deployed e-voting systems have been built to the same level of quality as typical
commercial IT projects, far below the appropriate level for critical infrastructure.

These challenges have been compounded because many e-voting system vendors
and election officials have shied away from rigorous public security scrutiny. They’ve
used electoral laws, intellectual property claims, computer intrusion statutes, and
non-disclosure agreements to create impediments for concerned citizens and secu-
rity researchers. As a result, the hardest part of finding security problems with fielded
e-voting systems has often been to legally gain access to the systems for study. (Of
course, actual criminals intent on rigging an election are unlikely to be deterred by
the need to break the law.) It’s unfortunate that officials and skeptical researchers are
sometimes at odds, since ultimately both groups are working to see elections con-
ducted well, and since, as this chapter shows, voters have good reason to be worried
about the current state of e-voting security.

Practical Attacks on Real-World E-Voting � 145

Figure 7.1: The Diebold AccuVote-TS was the most common DRE in the U.S. [233].

7.2 Touchscreen DREs
Direct recording electronic (DRE) voting machines are essentially general-purpose
computers running specialized election software. Computer scientists have long been
skeptical that voting systems of this type can be made secure. Experience with com-
puter systems of all kinds shows that it is exceedingly difficult to ensure the reliability
and security of complex software or to detect and diagnose problems when they do
occur. Yet DREs rely fundamentally on the correct and secure operation of complex
software programs.

7.2.1 Diebold

In the United States, the first touchscreen DRE to receive significant public scrutiny
was the Diebold AccuVote-TS, shown in Figure 7.1. The AccuVote-TS and its newer
relative the AccuVote-TSx were, in the mid-2000s, the most widely deployed elec-
tronic voting platform in the U.S. In the November 2006 general election, they were
used in 385 counties representing over 10% of registered voters [211]. More than
33,000 of the TS machines were in service nationwide [205].

146 � Real-World Electronic Voting: Design, Analysis and Deployment

In most respects, the AccuVote-TS was a prototypical DRE. It interacted with the
user via an integrated touchscreen LCD display. To authenticate voters and election
officials, it used a motorized smartcard reader. On the side of the machine, behind
a locked metal door, was a memory card slot that poll workers used to load ballot
definitions and retrieve election results. The machine was also equipped with a small
printer that recorded the final vote totals. Internally, the hardware resembled that of
a laptop PC or a personal digital assistant. It included a RISC processor, 32 MB of
RAM and 16 MB of flash storage. When the machine was first switched on, it loaded
a boot-loader from the on-board flash. The boot-loader loaded the operating system,
Windows CE 3.0, and Windows launched an application called BallotStation that
conducted the election.

The first major study of these machines was carried out in 2003 by Kohno, Stub-
blefield, Rubin and Wallach, who studied a leaked version of the BallotStation source
code and found many design errors and vulnerabilities [351]. (Diebold employees
had stored a copy of the code on a company FTP site that was accessible to the
public, where it was discovered by Bev Harris of BlackBoxVoting [330].) Diebold
responded that the findings were “unrealistic” and pointed out that the researchers
did not test with a real voting machine or a production version of the software [206].

Public concern in light of Kohno’s study led the state of Maryland to authorize
two security studies. The first, by SAIC, reported that the system was “at high risk
of compromise” [521]. The second, conducted by RABA, a security consulting firm,
confirmed many of Kohno’s findings and suggested design changes to the Diebold
system [475]. A further security assessment was commissioned by the Ohio Secre-
tary of State and carried out by Compuware [168]. It examined several DRE systems
including the AccuVote-TS and identified a number of high-risk security problems.
Although these commercial studies reached similar conclusions, none of them of-
fered the public a detailed technical description of the security issues they found.

Independent researchers finally had an opportunity to study the AccuVote hard-
ware in 2006. Harri Hursti examined the hardware and compiled boot-loader
firmware of AccuVote-TS and TSx systems [315]. He discovered problems with a
software update mechanism that could allow malicious parties to replace the pro-
grams that operated the machines.

The same year, Feldman, Halderman and Felten at Princeton obtained an
AccuVote-TS from a private party and reverse engineered its hardware and soft-
ware [233]. They confirmed the results of the earlier studies by building working
demonstrations of several reported attacks, and they also discovered a variety of se-
rious new vulnerabilities. Their main findings were:

1. They confirmed Hursti’s discovery that anyone who had physical access to the
machine—or to a memory card that would later be inserted into a machine—
could install malicious software. This could be achieved by opening the ma-
chine and replacing a socketed ROM chip inside, or, more easily, by exploit-
ing back-door features in Diebold’s boot-loader firmware. When the machine
booted, it checked the removable memory card to see whether certain spe-

Practical Attacks on Real-World E-Voting � 147

Figure 7.2: The Princeton Diebold study demonstrated vote-stealing malware that
could spread from machine to machine while changing all records of the vote [233].

cial files existed. If a file named explorer.glb was present, the machine
would launch Windows Explorer in place of Diebold’s BallotStation election
software, allowing an attacker to manipulate the software and files on the ma-
chine. Alternatively, if the memory card contained a file named fboot.nb0
or nk.bin, the machine would replace the boot-loader code or operating sys-
tem partition in its on-board flash memory with the file’s contents. This was
apparently intended as a software update mechanism, but there were no cryp-
tographic integrity checks or on-screen confirmation prompts.

2. The Princeton team went on to create demonstration vote-stealing malware that
modified all of the vote records, audit logs, and protective counters stored by
the machine, so that even careful forensic examination of the files would find
nothing amiss. All of these records were under the control of user-space soft-
ware running on the machine. The demonstration malware, illustrated in Fig-
ure 7.2, was a Windows CE application that ran invisibly in the background
alongside the BallotStation application. It included a user interface that al-
lowed the attacker to interactively control which candidate would receive what
fraction of votes. The malware parsed each new ballot as it was cast and then
switched the minimum number of votes necessary to ensure that the favored
candidate always had at least the desired percentage of the total.

3. The researchers developed a voting machine virus that could spread the vote-
stealing code automatically and silently from machine to machine during nor-
mal pre- and post-election activities. The virus propagated via the removable
memory cards by exploiting the software update mechanism to replace the ex-

148 � Real-World Electronic Voting: Design, Analysis and Deployment

Figure 7.3: Voting machine keys for sale on Diebold’s website [277]. The key cuts
(blacked out by this author) were shown clearly enough to produce working replicas.

isting boot-loader in the machine’s on-board flash. Once installed, the virus
copied itself to every memory card inserted into the infected machine. If those
cards were inserted into other machines, they too would become infected. As
a result, an attacker could infect a large population of machines while only
having temporary physical access to a single machine or memory card. Once
the virus infected a machine, removing it would require factory service, since
the malicious boot-loader disabled in-field software updates.

Although the unauthenticated update mechanism made it easy to tamper with the
machine’s software given access to the memory card, an attacker might still have to
bypass one physical security feature: the lock on the memory card door (Figure 7.1,
bottom right). Yet even in this respect, the AccuVote-TS gave attackers a variety of
weaknesses to choose from:

1. The lock was of poor quality and could be picked using only paperclips.

2. All AccuVote-TS machines shared the same key cuts, so stealing the key to
any one of them would allow an attacker to open them all.

3. The exact same key is commonly used in office furniture, jukeboxes, and hotel
minibars, and is for sale at many online retailers. The Princeton team purchased
copies of the key from several sources, and all could open the machine [234].

4. Diebold itself sold replacement keys, although they could only be purchased
by municipalities that already owned the machines. However, the company’s
online catalog included a photograph of the key (Figure 7.3) that was detailed
enough to allow anyone to create a working copy by filing a key blank [277].

Practical Attacks on Real-World E-Voting � 149

A poll worker, technician, or other person who had private access to a machine for as
little as one minute could use these methods with little risk of detection. Poll workers
often do have such access; in a widespread practice called “sleepovers,” machines
are sent home with poll workers the night before the election.

While some of these problems could be eliminated by improving Diebold’s
software—such as by changing the firmware to properly authenticate software
updates—others reflect deeper architectural problems with DREs. Since all records
of the vote are under software control, if that software is malicious or malfunctioning,
the integrity of the election results is lost.

7.2.2 Top to Bottom

Following these Diebold-focused studies, two states commissioned comprehensive
security reviews of their election technology that encompassed products from several
major e-voting vendors. In 2007, California Secretary of State State Debra Bowen
organized a study, the California Top-to-Bottom Review (TTBR) [130], that exam-
ined systems manufactured by Hart InterCivic, Sequoia Voting Systems, and Diebold
Election Systems (which changed its name to Premier Election Solutions during the
study). David Wagner of the University of California, Berkeley, led a 40-person team
that performed documentation review, source code analysis, red team testing, and ac-
cessibility review. The scope of testing included not only the voting machines but also
their back-end election management software, making the TTBR the most compre-
hensive real-world e-voting security evaluation to date.

One subset of the TTBR team analyzed the Diebold AccuVote-TSx DRE (a newer
model than the AccuVote-TS studied previously), AccuVote-OS optical scanner and
GEMS election management system [129]. They discovered software flaws, includ-
ing buffer-overflow vulnerabilities, that attackers could exploit to install malicious
software on the voting machines and on the election management back-end systems.
These flaws could be used to spread a vote-stealing virus that would propagate even
more efficiently and be more difficult to detect than the virus developed by the Prince-
ton team. Furthermore, the AccuVote DRE failed to protect ballot secrecy, since the
digital ballot records were retained in the order in which they were cast and con-
tained a time stamp for each vote. This would allow election workers who observed
the order in which individuals cast their ballots to discover how those individuals
voted. The team concluded that because “the vulnerabilities in the Diebold system
result from deep architectural flaws, fixing individual defects piecemeal without ad-
dressing their underlying causes is unlikely to render the system secure” [129].

Other TTBR review teams analyzed voting systems from Sequoia Voting Sys-
tems and Hart InterCivic and reached similar conclusions. The Sequoia team un-
covered “numerous programming, logic, and architectural errors” as a result of poor
design and software engineering practices. These included buffer-overflow vulnera-
bilities and weak or ineffective cryptography, largely based on hard-coded crypto-
graphic keys [105]. Once again, these problems could allow vote-stealing code to

150 � Real-World Electronic Voting: Design, Analysis and Deployment

spread virally and compromise both the integrity of the election result and the se-
crecy of voters’ ballots. The Hart review team discovered that the machines—which
were connected via a local-area network inside the polling place—failed to properly
secure their network interfaces, allowing voters or poll workers to connect to unse-
cured network links and cast votes, eavesdrop on voted ballots and even modify the
software [317].

In light of the TTBR’s findings, Secretary Bowen decertified DRE voting ma-
chines from all three vendors and then recertified them for limited use subject to
stringent security and post-election auditing requirements [130]. In particular, Cali-
fornia would only permit the Diebold and Sequoia DREs to be used for early voting
and to operate a single machine at each poll site for accessibility purposes.

Later in 2007, Ohio Secretary of State Jennifer Brunner initiated a similar state-
wide voting technology review, known as Project EVEREST [434]. The study ex-
amined systems from Elections Systems and Software (ES&S), Hart InterCivic and
Premier Election Solutions, under the leadership of Patrick McDaniel from Penn
State [387]. Remarkably, although the EVEREST team studied the same Diebold
and Sequoia systems as California, they found yet more vulnerabilities that had been
overlooked in the earlier security reviews.

In the wake of these studies, most U.S. states moved away from DRE voting.
By the 2014 general election, 70% of American voters were casting ballots on pa-
per [92].

7.2.3 The Test of Time

An e-voting system must withstand not only the attacks known when it is designed
but also those invented during its intended service lifetime. Because the development,
certification and procurement cycle for voting machines is unusually slow, the service
lifetime can be 20 or 30 years. It is unrealistic to assume that any design, however
good, will remain secure for so long.

Checkoway et al. [154] illustrated this in a study of the Sequoia AVC Advan-
tage, a DRE designed in the early 1980s that was still in use in 2009 in New Jersey
Louisiana and various other states. Appel et al. had performed a security review and
found that the AVC Advantage could be tampered with by replacing the socketed
ROM chips where their software was stored [60], but the question remained whether
the machines could be manipulated without physical access.

The AVC Advantage was designed with a form of data-execution prevention
(DEP) as a defense against buffer-overflow attacks. A circuit on the motherboard
prevents the machine from executing any instruction fetched from its RAM, as op-
posed to the separate ROM chips containing the election software. This protection
seemed strong in the 1980s, but two decades of advances in attack techniques have
rendered it less effective. Checkoway et al. showed that they could bypass the de-
fense using return-oriented programming, an exploitation technique introduced in

Practical Attacks on Real-World E-Voting � 151

2007 [523] that allows an attacker to combine short instruction sequences already
present in the ROM into a Turing-complete set of “gadgets,” from which any desired
behavior can be synthesized. The team demonstrated that they could use this method
to inject vote-stealing code from the machine’s removable ballot cartridges [154].

Another question surrounding the life-cycle of DRE voting machines is whether
they can be safely discarded when they are taken out of service. This author dis-
covered in 2010 that government-surplus Diebold DREs he had purchased still con-
tained vote records from real elections [279]. As the California TTBR showed, the
AccuVote machines store ballots in a predictable order, which allows an attacker to
reconstruct the order in which votes were cast. By combining data left in machines’
internal flash memory with records from polling places, it might be possible to de-
termine how individuals voted. Flash memory is tricky to completely erase [573],
and more work is needed to establish adequate procedures for sanitizing the internal
storage of surplus DREs before they are sent for disposal.

It would be a shame if obsolete or insecure DREs ended up in landfills, since they
are often rugged PCs that could be repurposed for a range of useful purposes. Hal-
derman and Feldman demonstrated one such application in 2010 [281]. They started
with a Sequoia AVC Edge DRE that had recently been retired from elections in Vir-
ginia and reprogrammed it as a fully functional PAC-MAN machine (see Figure 7.4).

7.2.4 Around the World

Elections around the world are remarkably diverse in terms of local laws and tech-
nical requirements, and many countries prefer that election equipment is manufac-
tured domestically, as a matter of national sovereignty. Despite this diversity, in every
country where DRE voting security has been rigorously assessed, researchers have
found serious vulnerabilities.

The Netherlands

In 2006, Gonggrijp and Hengeveld examined the Nedap ES3B, a DRE used by about
90% of Dutch voters [263]. The researchers were affiliated with Wij vertrouwen stem-
computers niet (“We do not trust voting computers”), a concerned-citizens’ group
founded by Gonggrijp. After obtaining Nedap machines from two municipalities,
they reverse engineered the hardware and software and discovered a variety of prob-
lems. They concluded that the system’s basic security design was lax—for exam-
ple, a privileged maintenance mode was accessible using a hard-coded password
(“GEHEIM,” the Dutch word for “SECRET”). Moreover, they showed that an at-
tacker with temporary physical access to the machine could quickly replace the sock-
eted EPROM chips containing its software. To demonstrate the risks, they developed
vote-stealing malware called Nedap PowerFraud that could surreptitiously change
votes while the election was underway. They also reprogrammed one of the machines
to play chess (see Figure 7.5), in response to a dare from Nedap’s founder.

152 � Real-World Electronic Voting: Design, Analysis and Deployment

Figure 7.4: Voting researchers converted a surplus Sequoia AVC Edge DRE into a
working PAC-MAN machine to show how easily its software could be modified [281].

Gonggrijp and Hengeveld also discovered a serious threat to voter privacy that
had not been considered in previous research. They discovered unintended radio em-
anations from the ES3B that could be picked up on an inexpensive radio scanner or
short-wave receiver from several meters away. The signal was different depending
on whether or not the machine’s display was showing text with an accented char-
acter. The display would show the name and party of the selected candidate, and
since only one major political party in the Netherlands had an accent in its name, this
side-channel could leak substantial information about the voter’s choice [263].

Subsequent to these findings, The Netherlands abandoned DRE voting and re-
turned to manually counted paper ballots [545]. In Germany, where Nedap DREs
had also been widely adopted, the findings influenced a legal challenge to the use of
electronic voting. In 2009, the German Federal Constitutional Court ruled that pa-
perless DREs were unconstitutional and that e-voting was only permissible if “the
essential steps of the voting and of the determination of the result can be examined
by the citizen reliably and without any specialist knowledge” [122] (see Ch. 3).

Practical Attacks on Real-World E-Voting � 153

Figure 7.5: Dutch researchers showed that they could quickly replace the firmware
ROMs in the Nedap ES3B DRE to tamper with votes . . . or make it play chess [263].

Brazil

Brazil has used DRE voting machines nationally since 2000. Although the legisla-
ture briefly adopted a VVPAT requirement in 2002, it was eliminated the following
year [483]. The electoral authorities have long maintained that the machines are com-
pletely secure, but they refused until recently to allow any meaningful independent
review of the hardware and software. In 2009, they inaugurated a series of periodic
public security tests, and outside experts first had some limited access to the voting
machines’ source code in 2012, during the second round of this public testing.

A team of researchers from the University of Brasilia, led by Diego Aranha, took
part in the 2012 tests [62]. They uncovered serious weaknesses, including mishan-
dling of encryption keys and insecure software engineering practices. Most signifi-
cantly, they discovered a major flaw in the machines’ privacy protections.

Brazil’s DREs (see Figure 7.6) store a digital record of each vote, but, to safe-
guard the secret ballot, the records are kept in a shuffled order produced using a
pseudorandom number generator (PRNG). When examining the source code, the re-
searchers found that, rather than using a cryptographically secure PRNG, the Brazil-
ian machines were programmed to use the C rand() and srand() functions (a
notoriously insecure PRNG). Moreover, the PRNG was seeded using the time (in

154 � Real-World Electronic Voting: Design, Analysis and Deployment

Figure 7.6: Brazil’s DRE voting machines failed to properly shuffle electronic vote
records, potentially allowing malicious insiders to deanonymize them.

seconds) when the machine was initialized. As the researchers pointed out, this time
is also recorded on the printed “zero tape” and in the system’s logs that accompany
the vote database. As a result, a malicious insider or external attacker who gains ac-
cess to the data recorded by the DRE could completely reverse the shuffling process
and associate every voter in sequence with their ballot choices, fully compromising
the secret ballot [62].

Although the electoral authorities downplayed these findings (the judges in the
public test awarded the researchers’ team a score of 0.03 points out of a possible
400!), DRE security issues received widespread public attention following the close
outcome of the 2014 presidential race. A legal challenge and security audit conducted
by the losing political party concluded that the paperless DREs were not possible to
audit [474]. In response, the national legislature overrode a presidential veto to pass
a law reintroducing a VVPAT requirement [61].

Argentina

Some municipalities in Argentina use an unusual e-voting system called Vot.ar,
which relies on paper ballots with embedded RFID chips [570]. Voters use a touch-
screen ballot marker that prints their selections while simultaneously storing them in
the RFID chip. The ballots are collected in a ballot box and then counted using an

Practical Attacks on Real-World E-Voting � 155

RFID reader. The totals from each polling place are transmitted electronically to a
central counting server to produce the election results.

During elections in Buenos Aires in July 2015, various independent researchers
uncovered problems with Vot.ar. Joaquín Sorianello found that the private keys used
to transfer the polling place results were publicly available on the Internet [106],
potentially allowing an attacker to monitor or manipulate the returns. An anonymous
leaker published the Vot.ar source code [471], and it was analyzed by a group of
researchers who discovered a major flaw in the vote counting logic [56]. As a result
of this flaw, an attacker could manipulate the data stored in the RFID chip so that a
ballot would be counted as multiple votes.

Rather than responsibly addressing these concerns, authorities in Argentina at-
tempted to suppress them. The Buenos Aires Metropolitan Police raided Sorianello’s
home and seized his computers, and a judge ordered Argentinian ISPs to block
some of the websites where information about the system’s security was being
shared [106].

India

India, the world’s largest democracy, is also the world’s largest user of DRE voting.
In the 2014 parliamentary election, more than 550 million voters cast their ballots
on 1.4 million machines [575]. India’s DREs look very different from those used in
the U.S. and Europe. A marvel of engineering minimalism, they are simple, battery-
powered embedded systems, consisting of a ballot unit used by voters and a control
unit used by poll workers (see Figure 7.7). They lack upgradable software and inter-
faces for digitally loading ballot designs or offloading results. Instead, workers press
buttons to reset the machines and set the number of candidates on the ballot. After the
election, the control unit shows the vote total for each candidate on an LED display.

The Election Commission of India has never permitted a rigorous independent
security review of the machines, known in India as EVMs, and has kept many de-
tails of their design secret, but it has maintained that they are “fully tamper-proof.”
This claim was challenged in 2010 by a team led by a self-taught engineer and busi-
ness owner from Hyderabad named Hari K. Prasad. He collaborated with this author,
Rop Gonggrijp and several others to perform a detailed security study of a machine
provided by an anonymous government whistle-blower [578].

The researchers demonstrated two attacks that involve physically tampering with
the machines’ hardware. The DREs are stored between elections in low-security fa-
cilities that typically contain thousands of machines, so large-scale unauthorized ac-
cess is a credible threat. The first attack was to replace the LED display in the control
unit with a look-alike, shown in Figure 7.8, that would substitute fraudulent totals
when showing the election results [578]. The dishonest display contained a hidden
Bluetooth radio that the attacker would use to select the winning candidate on a
smartphone app.

156 � Real-World Electronic Voting: Design, Analysis and Deployment

Figure 7.7: Halderman, Prasad, and Gonggrijp studied an Indian DRE provided by
an anonymous whistle-blower [578]. The simple embedded system design consists of
a ballot unit used by voters (left) and a control unit used by poll workers (right).

Figure 7.8: Researchers demonstrated how attackers could replace the display in the
Indian DRE with a dishonest look-alike. They added parts (bottom), hidden under
the LEDs, that substitute fraudulent vote totals when showing election results [578].

The second attack was a digital form of ballot box stuffing—which had been a
widely reported problem in India prior to the introduction of e-voting [574]. The
researchers constructed an inexpensive hand-held device that could be attached to
the DREs’ memory chips to quickly modify the vote records [578]. This attack could
be performed by criminals who took over a poll site or by insiders during the interval
between voting and counting, which may be several weeks in India.

Practical Attacks on Real-World E-Voting � 157

Both attacks were made far easier and cheaper by the machines’ minimalist de-
sign. (Among other simplifications, the EVMs do not use even basic cryptography
to protect vote data.) They illustrate how DREs’ vulnerabilities stem not only from
complexity, as exhibited by systems in the U.S. and Europe, but more fundamentally
from the need to protect against tampering for the entire life-cycle of the equipment.

A few months after Prasad and his coauthors published their study, he was ar-
rested by authorities demanding to know who provided the machine [278]. Although
Prasad was detained for more than a month, he refused to name his source [559].
The arrest drew national and international attention and led the leaders of India’s
major political parties to ask the Election Commission to implement a paper trail and
other security measures [313]. The Election Commission subsequently began trials
of a VVPAT printer attachment [555]. In 2013, the Supreme Court of India ruled that
such a paper trail was “an indispensable requirement of free and fair elections” [549]
and directed the government to fully implement the VVPAT, though as of 2015 the
printers had only been introduced in some constituencies [413].

7.3 Internet Voting
Conducting elections for public office over the Internet raises severe security risks,
beyond even those facing poll-site systems. Election servers must be accessible from
the public Internet, exposing them to the potential for remote compromise and denial
of service. Voters interact with these servers from their own devices, which are fre-
quently infected with malware. Several researchers have cataloged threats to internet
voting (e.g., [322, 492]), even as others have proposed systems and protocols that
may be steps to solutions someday (see Section III of this book). Although a number
of states and countries have charged ahead with systems for collecting votes online
(see Chapters 5 and 6), every such system that has received rigorous independent
security scrutiny has been shown to have significant vulnerabilities.

Among the practical challenges to secure internet voting are:

The Poor State of Software Security

Real-world internet voting systems tend to be built on top of commercial-off-the-
shelf (COTS) software, which, despite the use of the term “commercial,” includes
most everyday open-source software. Unfortunately, the dominant security practice
for COTS developers is still “penetrate and patch.” While this approach is suitable
for the economic and risk environment of typical home and business users, it is not
appropriate for critical security systems, such as voting applications, due to the severe
consequences of failure.

Architectural Brittleness in Web Applications

Getting web security right is complicated, and small mistakes in the implementation
and configuration of web applications can result in total compromise. In this sense,

158 � Real-World Electronic Voting: Design, Analysis and Deployment

the web is a brittle platform for secure application development. This is illustrated by
the vulnerabilities in the Washington, D.C., and New South Wales web-based Internet
voting systems, described below. In both cases, vulnerabilities resulting from small
oversights—which could have been prevented by changing single lines of code—
jeopardized the integrity of election results. Mistakes like these are common in web
applications, and they are hard to eradicate because of the multitude of places in the
software that they can exist, any one of which might be overlooked.

Exposure to Internet-Based Threats

Unlike poll-site voting, online voting systems necessarily have servers that are acces-
sible from the public Internet. Consequently, they expose what might otherwise be
a regional election to attackers from around the globe. Over the past decade, attack-
ers have become increasingly sophisticated, and critical systems such as elections
now face potential attacks from advanced cybercriminals and even state-sponsored
attacks. In addition to compromising the central voting server, attackers could launch
denial-of-service attacks aimed at disrupting the election, they could try to redirect
voters to fake voting sites, and they could conduct widespread attacks on voters’
client machines, perhaps using pre-existing botnet infections. These threats corre-
spond to some of the most difficult unsolved problems in Internet security and are
unlikely to be overcome soon.

While Internet-based financial applications, such as online banking, share some
of the threats faced by Internet voting, there is a fundamental difference in ability
to deal with compromises after they have occurred. In the case of online banking,
transaction records, statements and multiple logs allow customers to detect specific
fraudulent transactions—and, in many cases, allow the bank to reverse them. Inter-
net voting systems cannot keep such fine-grained transaction logs without violating
ballot secrecy for voters. Even with these protections in place, banks and merchants
suffer billions of dollars of online fraud every year but write it off as part of the cost
of doing business [364]. Fraudulent election results are more difficult to tolerate.

7.3.1 The Washington, D.C., Internet Voting System

In 2010, the District of Columbia developed an Internet voting pilot project that was
intended to allow military and overseas absentee voters to cast their ballots using
a website [542]. Prior to deploying the system in the general election, the District
held a unique public trial: they conducted a mock election during which anyone was
invited to test the system or attempt to compromise its security [190].

A team from the University of Michigan, led by this author, participated in the
trial. Within 36 hours of the system going live, the Michigan team had gained nearly
complete control of the election server. They successfully changed every vote and
revealed almost every secret ballot. Election officials did not detect their intrusion for
nearly two days—and might have remained unaware for far longer had the intruders
not deliberately left a prominent clue. This case study was the first to analyze the

Practical Attacks on Real-World E-Voting � 159

Figure 7.9: Washington, D.C., built an Internet voting system to allow overseas mil-
itary voters and other expats to return votes via a website [579].

security of a government Internet voting system from the perspective of an attacker in
a realistic pre-election deployment. The story, which the Michigan team recounted in
a blog post [280] and a later research paper [579], dramatically illustrates the dangers
and challenges that face Internet voting in practice.

The D.C. system was created by the Washington, D.C., Board of Elections and
Ethics (BOEE) and was officially known as the D.C. Digital Vote-by-Mail Service.
It was developed as an open-source project in partnership with the nonprofit Open
Source Digital Voting Foundation’s TrustTheVote project [447]. The software was
written using the popular Ruby-on-Rails framework and the COTS Apache web
server and MySQL database. To protect the servers, D.C. used a range of standard
security mechanisms, including HTTPS, firewalls, and an intrusion detection system.

Months prior to the election, each eligible voter received a letter by postal mail
containing a sixteen-character PIN and instructions for using the system. After vis-
iting the election website (Figure 7.9) and logging in with their PINs, voters would
download their ballots as PDF files, fill them in using a PDF reader, and upload them
back to the server. To safeguard ballot secrecy, the server immediately encrypted

160 � Real-World Electronic Voting: Design, Analysis and Deployment

each uploaded ballot using a public key. When the voting period had ended, officials
would transfer the encrypted ballots to an airgapped computer, decrypt them using a
private key and print them for counting alongside mail-in absentee ballots.

D.C. opened the election server for the mock election on September 28, 2010.
(This trial was scheduled to conclude only three days before the system would be
made available for use by real voters.) After a few hours of examining the source
code, the Michigan team found a devastating vulnerability.

The problem had to do with the code that processed uploaded ballots. Whenever a
voter uploaded a ballot, the server would store it on disk using a temporary filename
and encrypt it by executing a command called gpg with the name of this tempo-
rary file as a parameter, for example: “gpg "/tmp/ballot12345.pdf"”. The
Michigan team realized that although the server replaced the filename with an auto-
matically generated name (“ballot12345” in this example), it kept whatever file
extension the voter provided. Instead of a file ending in “.pdf,” an attacker could up-
load a file with a name that ended in almost any string, and this string would become
part of the constructed command.

This would not have been a problem, except that the voting system develop-
ers mistakenly wrapped the filename in double quotes rather than single quotes.
The server processed the command using the Bash shell, and in Bash, filenames
in double quotes can contain special characters that cause the computer to run other
commands. For example, the filename “ballot12345.$(sleep 10)” would
cause the server to pause for ten seconds before responding (executing the command
“sleep 10”). Consequently, by uploading ballots with carefully crafted filenames,
an attacker could execute arbitrary code on the election server.

On the second day of the mock election, unbeknownst to the voting officials,
the Michigan team started exploiting the vulnerability against the D.C. server. They
carried out several attacks that illustrate the devastating effects that criminals could
have during a real election if they gained a similar level of access:

1. Stealing secrets. As soon as they had breached the server, they began collecting
crucial secret data, including the database username and password, the public
key used to encrypt the ballots, and log, history and configuration files. This
information would aid the attackers in compromising the system again if their
infiltration was discovered and cut off.

2. Changing past votes. Next, they modified all the votes that had already been
cast, replacing them with ballots marked with write-in votes for other can-
didates (see Figure 7.10). Although the system encrypted voted ballots, the
attackers simply discarded the encrypted files and replaced them with forged
ballots that they encrypted using the public key they had stolen.

3. Changing future votes. The attackers modified the code for the server software
to rig the system so that future votes would be replaced in the same manner.
This was possible because the server had been improperly configured such that
the election software had sufficient privileges to modify itself.

Practical Attacks on Real-World E-Voting � 161

Figure 7.10: A team from the University of Michigan hacked into the D.C. Internet
voting system during a mock election and replaced every ballot with a set of write-in
votes for evil robots and artificial intelligence systems from science fiction [579].

4. Compromising the secret ballot. The attackers installed a backdoor that let
them view any ballots that voters cast after the attack. This modification
recorded the votes, in unencrypted form, together with the names of the voters
who cast them, violating ballot secrecy.

5. Stealth. . . and a “calling card.” To test how well election officials could de-
tect and recover from such an attack, the Michigan team did not immediately
announce what they had done. Like a real attacker, they attempted to alter the
server’s logs and other files to remove evidence of the intrusion. However, they
also left a deliberate clue: they modified the website so that after a user voted,
their browser would begin playing “The Victors,” the University of Michigan
fight song. Nevertheless, the attack remained active for two days before other
testers pointed out the fight song and D.C. officials took the server offline.

Recovery from such attacks is difficult; there is little hope for protecting future
ballots from this level of compromise, since the code that processes the ballots is
itself suspect. Using backups to ensure that compromises are not able to affect ballots
cast prior to the compromise may conflict with ballot secrecy in the event that the
backup itself is compromised.

162 � Real-World Electronic Voting: Design, Analysis and Deployment

Figure 7.11: D.C. invited the public to try to compromise their Internet voting sys-
tems. A team from the University of Michigan hacked in and changed all the votes
in a mock election. They also accessed webcams in the data center, shown here [579].

The Michigan attackers found a variety of additional vulnerabilities during the
tests, including routers and other network equipment with easily guessed passwords.
They also found video cameras in the server data center that had no passwords at
all, allowing attackers to identify individuals with access to the facility and learn the
schedule of security patrols (see Figure 7.11). Interestingly, although the D.C. system
included a network intrusion detection system (IDS) device, it was not configured to
intercept and monitor the contents of the encrypted HTTPS connections that carried
the attack. This resulted in a large “blind spot” for the system administrators.

The final problem discovered by the Michigan team—and perhaps the most dev-
astating, from an operational perspective—was that one of the election administrators
had uploaded a file to the mock election server that contained the login credentials
for all of the real voters who were eligible to vote online. An attacker who stole these
credentials from the known-insecure test server could have used them to cast votes in
the real D.C. election, which was set to begin only days later. Since these credentials
had to be delivered by postal mail, there was no time to send replacements.

Based on these results, the D.C. Board of Elections and Ethics decided not to
allow online ballot return during the real election. Voters were still able to download
and print ballots to return by postal mail, which reduced the round-trip delivery time
by about half with far less security risk.

The D.C. trial illustrated that, due to the brittleness of the web platform, small
mistakes—like using double quotes in place of single quotes in one line of a complex
program—can be enough to compromise all the votes in an online election. Although
the specific vulnerabilities that the Michigan team exploited would be simple to fix
in retrospect, it is far more difficult to guarantee that no such mistakes exist.

Practical Attacks on Real-World E-Voting � 163

7.3.2 Estonia’s Internet Voting System

Several countries have experimented with casting votes over the Internet, but none
uses Internet voting for binding political elections to a larger extent than Esto-
nia [329]. When Estonia introduced its online voting system in 2005, it became the
first country to offer Internet voting nationally, and, in recent national elections, more
than 30% of ballots were cast online [223]. Many Estonians view Internet voting as
a source of national pride, but one major political party has repeatedly called for
it to be abandoned [225]. Although Estonia’s Internet Voting Committee maintains
that the system “is as reliable and secure as voting [the] traditional way” [224], its
security has been questioned by critics from Estonia (e.g., [368, 436]) and abroad
(e.g., [531, 535]). See Chapter 6 for a perspective on the system by one of its cre-
ators.

Most Internet voting schemes proposed in the research literature use crypto-
graphic techniques to achieve a property called end-to-end (E2E) verifiability (see
Chapter 8). This means that anyone can confirm that the ballots have been counted
accurately without having to trust that the computers or officials are behaving hon-
estly. In contrast, Estonia’s system is not E2E-verifiable. It uses a conceptually sim-
pler design at the cost of having to trust the integrity of voters’ computers, server
components, and the election staff. Rather than proving integrity through technical
means, Estonia relies on a complicated set of procedural controls.

Security researchers have questioned whether these controls are adequate to se-
cure modern elections [535, 531], pointing out that the threats facing national elec-
tions have shifted significantly since the Estonian system was designed. Cyber-
warfare, once a largely hypothetical threat, has become a well-documented real-
ity [513, 379, 557, 556], and attacks by foreign states are now a credible threat to
a national online voting system. As recently as May 2014, attackers linked to Russia
targeted election infrastructure in Ukraine and briefly delayed vote counting [160].
Given that Estonia is an EU and NATO member that borders Russia, multiple states
with significant offensive cyber capabilities might be motivated to interfere in its
elections.

Despite these concerns, the system was not subjected to a detailed independent
security analysis until 2014, when a team of international researchers published a pa-
per pointing out a variety of weaknesses [535]. The team observed operations during
the October 2013 local elections, conducted interviews with the system developers
and election officials, assessed the software through source code inspection and re-
verse engineering, and performed tests on a laboratory reproduction of the system.

Although Estonia uses a number of safeguards—including encrypted websites,
security chips in national ID cards, and a smartphone-based vote confirmation sys-
tem, shown in Figure 7.12—the researchers showed that they all can be bypassed
by a realistic state-level attacker [535]. They demonstrated client-side malware that
steals the voter’s credentials and then silently replaces the cast vote. Such malware
could be delivered by pre-existing botnet infestations or by infecting the voting client

164 � Real-World Electronic Voting: Design, Analysis and Deployment

Figure 7.12: Voters in the Estonian Internet voting system can confirm their votes
by scanning a barcode with a smartphone app [535]. Researchers showed that this
mechanism could be bypassed by malware on voters’ computers or election servers.

before it is delivered to voters. They also demonstrated server-side attacks that target
the centralized vote counting server. Estonia lacks any mechanism to allow voters or
election officials to verify the correct operation of the counting server. By introducing
malware into the server—say, through a supply-chain attack [337]—a foreign power
or dishonest insider could arbitrarily change the reported results.

The researchers also observed serious lapses in the operational security prac-
tices of Estonian election officials [535]. These include administrators downloading
security-critical software over unsecured Internet connections, typing secret pass-
words and PINs on camera in videos published to YouTube during the election, and
preparing the voting software for public distribution on insecure personal laptops (see
Figure 7.13), among other examples. While practices like these might be considered
acceptable risks or understandable accidents in a low-security system, a critical sys-
tem such as a national election platform calls for much stricter procedural controls.

The 2014 study concluded that there are multiple ways that state-level attackers,
sophisticated online criminals or dishonest insiders could successfully attack the Es-
tonian Internet voting system, and that such an attacker could plausibly change votes,
compromise the secret ballot, disrupt elections or cast doubt on the integrity of re-
sults. Since these problems stem from basic architectural choices and fundamental
limitations on the security and transparency that can be provided by procedural con-
trols, the researchers recommended that Estonia suspend the use of the system [535].

Practical Attacks on Real-World E-Voting � 165

Figure 7.13: Researchers noted dangerous lapses in operational security during Es-
tonia’s 2013 election. Here, officials digitally sign the Internet voting client for distri-
bution to the public using a laptop that has online gambling software installed [535].

Unfortunately, Estonian public discourse concerning election technology has become
dominated by partisanship, and the national leadership has opted to continue online
voting for now in spite of the known security risks.

7.3.3 The New South Wales iVote System

The world’s largest deployment of online voting to-date was during the March 2015
state election in New South Wales, Australia. In this election, absentee voters had the
option to use a web-based online voting system called iVote, which was developed
by e-voting vendor Scytl in partnership with the New South Wales Electoral Com-
mission. Over 280,000 votes were returned through iVote (about 5% of the total),
exceeding the 70,090 Norwegian online votes in 2013 [522] and the 176,491 in the
2015 Estonian election [223].

Voters registered and cast their votes using websites managed by the electoral
commission. Upon online registration, they were given an iVote ID number and asked
to choose a six-digit PIN. These allowed them to log in to an online voting application
written in JavaScript and HTML. After casting their votes, they received twelve-digit

166 � Real-World Electronic Voting: Design, Analysis and Deployment

receipt numbers. Optionally, voters could call a telephone verification service and
enter their receipt numbers to hear an automated system read back their votes.

The system’s design is further described in reports published by the electoral
commission [423, 115]. However, no source code was made available to the pub-
lic, and the published descriptions lack sufficient detail for independent experts to
completely assess the system’s security. Prior to the election, the commission per-
formed its own security studies (e.g., [425, 424]), and officials declared that the vote
was “. . . completely secret. It’s fully encrypted and safeguarded, it can’t be tampered
with” [39].

While online voting in the March 2015 election was underway, Vanessa Teague
of the University of Melbourne and this author performed an independent, uninvited
security analysis of public portions of the iVote system [282]. They discovered criti-
cal security flaws that had been overlooked by the commission’s analyses and testing.

The central flaw that Halderman and Teague found had to do with iVote’s use of
HTTPS. The system relied on HTTPS to deliver the voting web application to users’
browsers without tampering. Unfortunately, configuring a web server to use HTTPS
correctly is nontrivial—operators must provision a browser-trusted certificate, select
appropriately strong cryptographic ciphersuites and ensure that older, insecure ver-
sions of TLS and SSL are disabled, among other details [401].

The researchers tested the main iVote server, cvs.ivote.nsw.gov.au, and
found that it used a safe HTTPS configuration. However, iVote also included third-
party JavaScript from an external server, ivote.piwikpro.com, as shown in
Figure 7.14. (Piwik is an analytics tool used to track site visitors.) The PiwikPro
server turned out to have poor HTTPS security and was vulnerable to several attacks.

One of these vulnerabilities was the FREAK attack [102, 209], short for Factoring
RSA Export Keys. FREAK is a TLS vulnerability that was publicly disclosed on
March 3, 2015, less than two weeks before the iVote system opened. Halderman
and Teague showed that a network-based man-in-the-middle could exploit FREAK
to impersonate the Piwik server and inject malicious JavaScript into the iVote web
application. Many popular browsers were susceptible to FREAK, including Internet
Explorer, Safari, and Chrome for Mac OS and Android [209]. Although patches were
released for most browsers about a week before iVote opened, it is likely that many
users had not yet applied the updates.

The Piwik server was also vulnerable to an even more powerful TLS attack that
affected all popular browsers: the Logjam attack [50], which was publicly disclosed
two months after the election. The researchers were aware of this flaw at the time
because Halderman was part of the team that discovered it, but they could not talk
about it publicly since responsible disclosure was still underway. In other words, the
voting security researchers had a zero-day TLS vulnerability that would have allowed
them to attack any voter’s iVote session.

Halderman and Teague showed that these flaws would allow an attacker to violate
ballot privacy or steal votes. To do this, the attacker would intercept connections from

Practical Attacks on Real-World E-Voting � 167

Figure 7.14: The New South Wales Internet voting website imported JavaScript
from a third-party server that suffered from several TLS vulnerabilities [282].

the voter’s browser to the Piwik server and use FREAK or Logjam to replace the real
Piwik code with malicious JavaScript, as shown in Figure 7.15. This code would
execute in the context of the user’s iVote session, where it could arbitrarily change
the operation of the iVote web application. The researchers demonstrated malware
that would steal the voter’s PIN and the content of their secret ballot, then substitute
a different vote of the attacker’s choosing.

Although these attacks require becoming a man-in-the-middle, criminal attackers
have many well-documented ways to achieve this, including compromising insecure
WiFi access points, poisoning ISP DNS caches, attacking vulnerable routers, and
hijacking BGP prefixes. (Such attacks are one of the main threats that HTTPS is
intended to guard against.) These attacks are especially practical in the context of a
large election, since the attacker can opportunistically target any insecure hosts or
infrastructure in the region where voting is taking place.

Such an attack might be caught by iVote’s optional telephone-based verification
system, but Halderman and Teague pointed out several ways that an attacker could
circumvent this mechanism, including a variety of tricks to reduce the probability that
a given voter would notice a problem. For instance, they could misdirect the voter
to a fake verification phone number that reads back the voter’s intended choices.

168 � Real-World Electronic Voting: Design, Analysis and Deployment

Figure 7.15: Researchers showed that a man-in-the-middle attacker could exploit
the vulnerabilities in the Australian iVote system to inject vote-stealing code [282].

Even more simply, the attacker could delay submitting the real vote and displaying
a receipt number for a few seconds, in hopes that the voter does not intend to verify
and leaves the website. If the voter navigates away without seeing a receipt number,
there is no chance to verify, and the attacker can substitute a fraudulent vote.

Another way to circumvent verification would be to mount a variant of the
“clash” attack [357]. The attacker would intercept a voter’s online registration ses-
sion and assign him or her the iVote ID and PIN of a like-minded person who had
already voted, preferably one who cast a simple vote likely to be repeated. Later, if
the victim’s choices match those of the first voter, all of the verification will look right
to both voters. The attacker can safely reuse the target voter’s registration credentials
to get a new iVote ID and PIN and cast an arbitrary vote. While the registration server
itself was protected by HTTPS, the main iVote gateway from which voters reached it
ran plain HTTP. This gave a man-in-the-middle attacker the opportunity to misdirect
registration attempts to a fake site of the attacker’s choosing.

Of course, the verification design also compromises privacy and exposes voters
to coercion, since it makes it easy to prove how you voted to anyone just by handing
over your credentials and receipt number. Furthermore, the design does not provide
strong evidence to support or disprove voter complaints, so it is difficult to distinguish
an attack from the baseline level of complaints due to voter error.

Practical Attacks on Real-World E-Voting � 169

After confirming that the attack was possible, Halderman and Teague notified the
authorities of the vulnerability by contacting the Australian CERT [282]. The elec-
toral commission responded the next day by modifying the iVote server configuration
to disable Piwik. After the vulnerabilities were removed, the researchers made their
findings public [551, 550] and later published a formal paper [282].

By the time the vulnerability was fixed, online voting had been taking place for
five days, and 66,000 votes had already been cast. The closest seat in the parliamen-
tary results was eventually decided by a margin of 3,177 votes, less than 5% of this
number [422]. While we may never know whether anyone exploited the opportu-
nity for electoral fraud, we know the opportunity was there—and if Internet voting
continues to be deployed on such large scales, it will not be the last opportunity.

7.4 Conclusion
Democracy relies on voters having well-founded trust in the processes used to collect
and count their votes. Unfortunately, when it comes to real-world e-voting systems,
the case studies in this chapter provide abundant grounds for skepticism.

In light of such results, restoring trust will require shifting the burden of proof
from the skeptics to system designers and operators. E-voting systems need to be de-
signed to produce sufficient evidence to convince rationally skeptical observers that
the outcome is correct. This could take the form of observable physical records (such
as paper ballots) or cryptographic proofs, so long as they can be publicly audited to
the necessary levels of assurance.

Yet evidence in support of the outcome is not sufficient. It is preferable to pre-
vent problems with the outcome, rather than merely detecting them. And many other
problems discussed in this chapter would not be caught by auditing such evidence—
for example, attempts to disrupt the election or to violate voter privacy. To safeguard
against these, e-voting systems need to be engineered to a level of security quality far
greater than that of typical information technology systems, on par with other kinds
of critical infrastructure. Elections should provide convincing evidence that this level
of quality has been achieved, by being transparent about their security measures and
engineering processes, and by making source code available for public review.

As we have seen, typical real-world e-voting systems are not designed to provide
these kinds of evidence—of the integrity of the outcome or of the quality of their en-
gineering. In most cases, they rely fundamentally on the correct and secure operation
of secret software that is tasked with collecting and counting votes in secret.

One promising way forward is to hasten the transition of end-to-end verification
(Chapter 8) from research to practice. Most of the fielded systems described in this
chapter look quite different from the e-voting systems proposed by researchers that
will be discussed later in this book. On one hand, real-world e-voting systems tend
to be less sophisticated—sometimes their functionality amounts to little more than

170 � Real-World Electronic Voting: Design, Analysis and Deployment

counting button presses. On the other hand, unlike research prototypes, they have
to cope with practical consideration ranging from price competition to the necessity
of being usable enough for non-technical voters and poll workers. We need more
research—and closer collaboration between researchers and election officials—to
develop verifiable e-voting systems that are suitable for real-world use.

	SECTION II REAL-WORLD E-VOTING IN NATIONAL ELECTIONS
	7: Practical Attacks on Real-World E-Voting

